一、TWAP算法和VWAP算法
TWAP:在设定的时间范围内匀速下单,降低市场冲击,最小化与市场TWAP的偏差;
VWAP:在设定的时间范围内对根据对市场成交量分布的预测进行下单,降低市场冲击,最小化与市场VWAP的偏差;
二、TWAP算法和VWAP算法参数
开始时间:策略开始执行的时间(剔除非交易时间段)。如果开始时间早于策略下达时间点时,则使用下达时间作为开始时间
结束时间:策略停止执行的时间(剔除非交易时间段)。过了结束时间还未完成的数量,将会自动释放到指令。算法执行的区间段,时间越短,任务执行强度(委托频率和单笔委托量)越高
量比比例:策略的成交数量与策略执行期间市场的总成交量(不包括策略执行之前和结束之后的市场成交量)之比。对于跟量和跟价策略,量比比例参数是作为目标比例来参考;而对于其它策略,是作为上限来控制
委托最小金额:控制子单单笔委托的最小金额 该参数只适用于股票。A股单位为元
基准价格:算法模型的参考基准价格,子单限价单价格不能超过该价格的不利价位方向;当填入价格为0时,则不设置基准价
三、TWAP策略和VWAP策略
TWAP(Time Weighted Average Price),时间加权平均价格算法,是最为简单的一种传统算法交易策略。
TWAP策略设计的目的是在使交易对市场影响最小化的同时提供一个较低的平均成交价格,从而达到减小交易成本的目的。
TWAP遇到比较大的问题是,在订单规模很大的情况下,均匀分配到每个节点上的下单量仍然较为可观,仍有可能对市场造成一定的冲击。另一方面,真实市场的成交量是在波动变化的,将所有的订单均匀分配到每个节点上显然是不够合理的。对于流动性较好的市场和订单规模较小的交易较为适用。
VWAP(Volume Weighted Average Price),成交量加权平均价格算法,是目前市场上最为流行的算法交易策略之一,也是很多其它算法交易模型的原型。首先定义VWAP,它是一段时间内证券价格按成交量加权的平均值:
VWAP 算法交易策略的目的就是尽可能地使订单拆分所成交的盯住市场。从VWAP 的定义公式来看,若希望能够跟住,则需要将拆分订单按照市场真实的成交量分时按比例进行提交,这就需要对市场分时成交量进行预测。
所谓带反馈的VWAP 算法交易策略,是指在原有VWAP 跟踪的基础之上,将每个时段未成交的订单按比例分摊至后面的时间段中,这样可以有效提高成交比率。
MVWAP 策略,除了成交量的预测方式之外(通常也是按照历史成交量加权平均进行预测),同样很重要的是对于交易量放大或减小的定量控制。一种简单的办法是在市场实时价格低于或高于VWAP市场时,将下一时段的下单量按固定比例放大或缩小,那么这个比例参数就存在一个最优解的问题。如果考虑得更为复杂和细致,这个比例还可以是一个随价格偏差(市场实时价格与VWAP市场之差)变化的函数。