akshare股票涨跌幅自定义范围查询:A股、港股、美股;与资金流向相关关系

参看:https://stock.hexun.com/2024-10-31/215251914.html
涨幅计算公式:(当前价格 - 上一个交易日收盘价)÷ 上一个交易日收盘价 × 100% 。
跌幅计算公式:(上一个交易日收盘价 - 当前价格)÷ 上一个交易日收盘价 × 100% 。

1、A股

涨幅

比如 5% 到 8%之间

import akshare as ak
import pandas as pd

# 获取当天所有 A 股数据
stock_data = ak.stock_zh_a_spot_em()

# 计算涨幅
stock_data['涨幅'] = (stock_data['最新价'] - stock_data['昨收']) / stock_data['昨收'] * 100

# 筛选涨幅在 5% 到 8% 之间的数据
filtered_data = stock_data[(stock_data['涨幅'] >= 5) & (stock_data['涨幅'] <= 8)]

# 显示结果
filtered_data[['代码', '名称', '涨幅']]

在这里插入图片描述

与资金流向相关关系
这里筛选大于7%涨幅与资金大小流向对应排序
下面东财与新浪接口,东财如果是第二天没有开盘无数据,新浪第二天早上没开盘默认有前一天的数据

## 东财接口
import akshare as ak
import pandas as pd

# 获取当天所有 A 股数据
stock_data = ak.stock_zh_a_spot_em()

# 计算涨幅
stock_data['涨幅'] = (stock_data['最新价'] - stock_data['昨收']) / stock_data['昨收'] * 100

# 筛选涨幅在 7% 以上的股票
filtered_data = stock_data[stock_data['涨幅'] >= 7]

# 获取资金流向排名(以3日为例)
fund_flow_rank = ak.stock_individual_fund_flow_rank(indicator="3日")

# 合并涨幅在7%以上的股票数据和资金流向数据
merged_data = pd.merge(filtered_data, fund_flow_rank, left_on='代码', right_on='代码')

# 按3日主力净流入净额和连板数列倒序排序
sorted_data = merged_data.sort_values(by=['3日主力净流入-净额'], ascending=[False])

排序列-倒序:3日主力净流入-净额
在这里插入图片描述

#新浪接口
import akshare as ak
import pandas as pd

# 获取当天所有 A 股数据
stock_data = ak.stock_zh_a_spot()

# 计算涨幅
stock_data['涨幅'] = (stock_data['最新价'] - stock_data['昨收']) / stock_data['昨收'] * 100

# 筛选涨幅在 7% 以上的股票
filtered_data = stock_data[stock_data['涨幅'] >= 7]
# 去掉代码列的前两个字符
filtered_data['代码'] = filtered_data['代码'].str[2:]

# 获取资金流向排名(以3日为例)
fund_flow_rank = ak.stock_individual_fund_flow_rank(indicator="3日")

# 合并涨幅在7%以上的股票数据和资金流向数据
merged_data = pd.merge(filtered_data, fund_flow_rank, left_on='代码', right_on='代码')

# 按3日主力净流入净额和连板数列倒序排序
sorted_data = merged_data.sort_values(by=['3日主力净流入-净额'], ascending=[False])


在这里插入图片描述

跌幅范围

比如 5% 到 8%之间

import akshare as ak
import pandas as pd

# 获取当天所有 A 股数据
stock_data = ak.stock_zh_a_spot_em()

# 计算跌幅
stock_data['跌幅'] = (stock_data['昨收'] - stock_data['最新价']) / stock_data['昨收'] * 100

# 筛选跌幅在 5% 到 8% 之间的数据
filtered_data = stock_data[(stock_data['跌幅'] >= 5) & (stock_data['跌幅'] <= 8)]

# 显示结果
filtered_data[['代码', '名称', '跌幅']]

在这里插入图片描述

2、港股

import akshare as ak

stock_hk_spot_em_df = ak.stock_hk_spot_em()
 
# 计算跌幅
stock_hk_spot_em_df['跌幅'] = (stock_hk_spot_em_df['昨收'] - stock_hk_spot_em_df['最新价']) / stock_hk_spot_em_df['昨收'] * 100

# 筛选跌幅在 5% 到 8% 之间的数据
filtered_data = stock_hk_spot_em_df[(stock_hk_spot_em_df['跌幅'] >= 5) & (stock_hk_spot_em_df['跌幅'] <= 8)]

# 显示结果
filtered_data[['代码', '名称', '跌幅']]


# 计算涨幅
stock_hk_spot_em_df['涨幅'] = (stock_hk_spot_em_df['最新价'] - stock_hk_spot_em_df['昨收']) / stock_hk_spot_em_df['昨收'] * 100

# 筛选涨幅在 5% 到 8% 之间的数据
filtered_data = stock_hk_spot_em_df[(stock_hk_spot_em_df['涨幅'] >= 5) & (stock_hk_spot_em_df['涨幅'] <= 8)]

# 显示结果
filtered_data[['代码', '名称', '涨幅']]

在这里插入图片描述

3、美股

import akshare as ak

stock_us_spot_em_df = ak.stock_us_spot_em()
# 计算涨幅
stock_us_spot_em_df['涨幅'] = (stock_us_spot_em_df['最新价'] - stock_us_spot_em_df['昨收价']) / stock_us_spot_em_df['昨收价'] * 100

# 筛选涨幅在 5% 到 8% 之间的数据
filtered_data = stock_us_spot_em_df[(stock_us_spot_em_df['涨幅'] >= 5) & (stock_us_spot_em_df['涨幅'] <= 8)]

# 显示结果
filtered_data[['代码', '名称', '涨幅']]


# 计算跌幅
stock_us_spot_em_df['跌幅'] = (stock_us_spot_em_df['昨收价'] - stock_us_spot_em_df['最新价']) / stock_us_spot_em_df['昨收价'] * 100

# 筛选跌幅在 5% 到 8% 之间的数据
filtered_data = stock_us_spot_em_df[(stock_us_spot_em_df['跌幅'] >= 5) & (stock_us_spot_em_df['跌幅'] <= 8)]

# 显示结果
print(filtered_data[['代码', '名称', '跌幅']])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值