机器学习算法实战系列:推荐系统核心技术——从协同过滤到深度学习

机器学习算法实战系列:推荐系统核心技术——从协同过滤到深度学习

引言

“每天影响着数十亿用户决策的推荐系统,究竟如何精准预测你的喜好?从电商平台到视频网站,从新闻推送到音乐播放列表,推荐算法正在重塑数字时代的用户体验!”

推荐系统是机器学习最具商业价值的应用领域之一,优秀的推荐算法能够显著提升用户参与度和商业转化率。本文将深入解析推荐系统的核心技术,从经典的协同过滤到前沿的深度学习方法,通过电商推荐、内容推荐等实战案例,带你全面掌握构建高效推荐系统的关键技术与工程实践。

第一部分:推荐系统基础

1.1 推荐系统类型

基于内容的推荐
  • 利用物品特征和用户偏好匹配
  • 核心思想:推荐类似用户过去喜欢的物品
协同过滤
  • 基于用户行为数据(用户-物品交互矩阵)
  • 两种范式:
    • 基于用户:寻找相似用户
    • 基于物品:寻找相似物品
混合推荐
  • 结合多种推荐策略
  • 典型方法:加权、切换、特征组合等

1.2 评估指标

离线评估
  • 准确率指标:RMSE、MAE
  • 排名指标:Precision@K、Recall@K、NDCG
  • 多样性:推荐列表的覆盖度、新颖性
在线评估
  • 点击率(CTR)
  • 转化率
  • 用户停留时长

第二部分:经典推荐算法

2.1 基于用户的协同过滤

算法步骤
  1. 计算用户相似度(余弦相似度、皮尔逊系数)
  2. 选择最相似的K个用户
  3. 基于相似用户的喜好生成推荐
Python实现
from sklearn.metrics.pairwise import cosine_similarity

def user_based_cf(user_item_matrix, user_id, top_n=5):
    # 计算用户相似度
    user_similarity = cosine_similarity(user_item_matrix)
    
    # 获取目标用户的相似用户
    similar_users = user_similarity[user_id].argsort()[::-1][1:]  # 排除自己
    
    # 计算加权评分
    scores = user_item_matrix.T.dot(user_similarity[user_id]) / user_similarity[user_id].sum()
    
    # 排除已交互物品
    already_interacted = user_item_matrix[user_id].nonzero()[0]
    scores[already_interacted] = -np.inf
    
    # 返回Top-N推荐
    return scores.argsort()[::-1][:top_n]

2.2 基于物品的协同过滤

算法优势
  • 更稳定的物品相似度
  • 适用于用户数量大的场景
实现优化
from scipy.sparse import csr_matrix

def item_based_cf(user_item_matrix, item_id, top_n=5):
    # 转换为物品-物品相似度
    item_item_sim = cosine_similarity(user_item_matrix.T)
    
    # 获取相似物品
    similar_items = item_item_sim[item_id].argsort()[::-1][1:top_n+1]
    return similar_items

2.3 矩阵分解(SVD)

数学原理
R ≈ P Qᵀ

其中R是用户-物品矩阵,P是用户隐因子矩阵,Q是物品隐因子矩阵

Surprise库实现
from surprise import SVD, Dataset, accuracy
from surprise.model_selection import train_test_split

# 加载数据
data = Dataset.load_builtin('ml-100k')
trainset, testset = train_test_split(data, test_size=0.25)

# 训练SVD模型
algo = SVD(n_factors=50, n_epochs=20, lr_all=0.005, reg_all=0.02)
algo.fit(trainset)

# 评估
predictions = algo.test(testset)
accuracy.rmse(predictions)

第三部分:深度学习推荐系统

3.1 神经协同过滤(NCF)

模型架构
  • 用户和物品的嵌入层
  • 多层感知机学习交互函数
TensorFlow实现
from tensorflow.keras.layers import Input, Embedding, Flatten, Concatenate, Dense
from tensorflow.keras.models import Model

def NCF(num_users, num_items, embedding_size=32):
    # 输入层
    user_input = Input(shape=(1,))
    item_input = Input(shape=(1,))
    
    # 嵌入层
    user_embedding = Embedding(num_users
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值