机器学习算法实战系列:推荐系统核心技术——从协同过滤到深度学习
引言
“每天影响着数十亿用户决策的推荐系统,究竟如何精准预测你的喜好?从电商平台到视频网站,从新闻推送到音乐播放列表,推荐算法正在重塑数字时代的用户体验!”
推荐系统是机器学习最具商业价值的应用领域之一,优秀的推荐算法能够显著提升用户参与度和商业转化率。本文将深入解析推荐系统的核心技术,从经典的协同过滤到前沿的深度学习方法,通过电商推荐、内容推荐等实战案例,带你全面掌握构建高效推荐系统的关键技术与工程实践。
第一部分:推荐系统基础
1.1 推荐系统类型
基于内容的推荐
- 利用物品特征和用户偏好匹配
- 核心思想:推荐类似用户过去喜欢的物品
协同过滤
- 基于用户行为数据(用户-物品交互矩阵)
- 两种范式:
- 基于用户:寻找相似用户
- 基于物品:寻找相似物品
混合推荐
- 结合多种推荐策略
- 典型方法:加权、切换、特征组合等
1.2 评估指标
离线评估
- 准确率指标:RMSE、MAE
- 排名指标:Precision@K、Recall@K、NDCG
- 多样性:推荐列表的覆盖度、新颖性
在线评估
- 点击率(CTR)
- 转化率
- 用户停留时长
第二部分:经典推荐算法
2.1 基于用户的协同过滤
算法步骤
- 计算用户相似度(余弦相似度、皮尔逊系数)
- 选择最相似的K个用户
- 基于相似用户的喜好生成推荐
Python实现
from sklearn.metrics.pairwise import cosine_similarity
def user_based_cf(user_item_matrix, user_id, top_n=5):
# 计算用户相似度
user_similarity = cosine_similarity(user_item_matrix)
# 获取目标用户的相似用户
similar_users = user_similarity[user_id].argsort()[::-1][1:] # 排除自己
# 计算加权评分
scores = user_item_matrix.T.dot(user_similarity[user_id]) / user_similarity[user_id].sum()
# 排除已交互物品
already_interacted = user_item_matrix[user_id].nonzero()[0]
scores[already_interacted] = -np.inf
# 返回Top-N推荐
return scores.argsort()[::-1][:top_n]
2.2 基于物品的协同过滤
算法优势
- 更稳定的物品相似度
- 适用于用户数量大的场景
实现优化
from scipy.sparse import csr_matrix
def item_based_cf(user_item_matrix, item_id, top_n=5):
# 转换为物品-物品相似度
item_item_sim = cosine_similarity(user_item_matrix.T)
# 获取相似物品
similar_items = item_item_sim[item_id].argsort()[::-1][1:top_n+1]
return similar_items
2.3 矩阵分解(SVD)
数学原理
R ≈ P Qᵀ
其中R是用户-物品矩阵,P是用户隐因子矩阵,Q是物品隐因子矩阵
Surprise库实现
from surprise import SVD, Dataset, accuracy
from surprise.model_selection import train_test_split
# 加载数据
data = Dataset.load_builtin('ml-100k')
trainset, testset = train_test_split(data, test_size=0.25)
# 训练SVD模型
algo = SVD(n_factors=50, n_epochs=20, lr_all=0.005, reg_all=0.02)
algo.fit(trainset)
# 评估
predictions = algo.test(testset)
accuracy.rmse(predictions)
第三部分:深度学习推荐系统
3.1 神经协同过滤(NCF)
模型架构
- 用户和物品的嵌入层
- 多层感知机学习交互函数
TensorFlow实现
from tensorflow.keras.layers import Input, Embedding, Flatten, Concatenate, Dense
from tensorflow.keras.models import Model
def NCF(num_users, num_items, embedding_size=32):
# 输入层
user_input = Input(shape=(1,))
item_input = Input(shape=(1,))
# 嵌入层
user_embedding = Embedding(num_users