小波分析与神经网络 故障诊断

 



文章:《基于小波分析和神经网络的电机故障诊断研究》      

  小波变换既是时间尺度分析,又是时间一频率分析,它具有多分辨率的特点,且在时频域具有表征信号局部特征的能力,利用小波变换的奇异点(如过零点、极值点)在多尺度下的综合表现来检测信号的局部突变点,从而进行故障诊断。
        小波分析能够将任何信号分解到一个由小波伸缩而成的基函数族上,对信号进行高、低频部分局部细化并保留原信号的时域特征,因而具有良好的时频特性,能对非平稳信号进行有效识别,达到故障诊断的目的。
       小波变换与神经网络的结合主要有两种方式:
       1.松散型结合(文章选用):将小波分析作为常规神经网络的前置处理手段,为神经网络提供特征向量,进行训练,完成诊断。二者虽然彼此紧密相连,但却又相对独立。其结构如图1. 1所示。


       2.紧密型结合:它是在小波分析研究基础上提出的一种前馈网络。其基本思想是用小波元代替了神经元,即激活函数为已定位的小波函数基,相应的输入层到隐层的权值及隐层阈值分别由小波函数的尺度与平移参数所代替。如图1. 2所示。
 

       小波神经网络由于把神经网络的自学习特性和小波的局部特性结合起来,具有自适应分辨性、良好的容错性、逼近能力强、网络学习收敛速度快以及有效地避免了神经网络训练时局部最小值问题等优点。 
       把电机各种原因引起的振动特征和有关因素综合考虑,其主要表现为机械效应和电磁效应


一、小波分析     
        小波是什么呢?是一种能量在时域非常集中的波。它的能量是有限的,而且集中在某一点附近。比如下面这样:

preview


        因为小波变换本身对信号的奇异点十分敏感,这个特点可以用来跟踪那些非平稳、非线性和随机信号。小波分析能将不同频率组成的混合信号分解成不同频率的块信号,可有效地进行信噪分离、信号特征提取、故障诊断等。
        一个傅立叶系数通常表示某个贯穿整个时间域的信号分量,因此,即使是临时的信号,其特征也被强扯到了整个时间周期去描述。而小波展开的系数则代表了对应分量它当下的自己,因此非常容易诠释。。事实上,对于傅立叶变换以及大部分的信号变换系统,他们的函数基都是固定的,那么变换后的结果只能按部就班被分析推导出来,没有任何灵活性,比如你如果决定使用傅立叶变换了,那basis function就是正弦波,你不管怎么scale,它都是正弦波,即使你举出余弦波,它还是移相后的正弦波。总之你就只能用正弦波,没有任何商量的余地。而对于小波变换来讲,基是变的,是可以根据信号来推导或者构建出来的,只要符合小波变换的性质和特点即可。也就是说,如果你有着比较特殊的信号需要处理,你甚至可以构建一个专门针对这种特殊信号的小波basis function集合对其进行分析。这种灵活性是任何别的变换都无法比拟的。
        总结来说,傅立叶变换适合周期性的,统计特性不随时间变化的信号; 而小波变换则适用于大部分信号,尤其是瞬时信号。它针对绝大部分信号的压缩,去噪,检测效果都特别好。
        每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。而该小波的basis函数其实就是对这个母小波和父小波缩放和平移形成的。缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。
       完整的小波展开就是由母小波和父小波共同定义的:


       是父小波,父小波(scaling function)的变换平移给你不同的子空间,而不同的子空间给你不同的分辨率,这样你就可以用不同的分辨率去看目标信号。
       小波包分析能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对多分辨分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相应频带,使之与信号频谱相匹配,从而提高了时频分辨率。因而其应用价值也更广泛些。
        一个信号经完整小波包分解,实质上是将原信号在整个空间展开的过程,从数据结构来看,它是一种二分树结构;从数据分解关系来看,他是一种递推算法;从空间分解关系来看,它把正交小波分解的子空间作进一步细分;从频域划分来看,它将有限频带细分为若干更细频带的组合。
        如果采用多分辨率小波分析对电机故障进行诊断,虽然能够对故障信号进行一定的时频分析,但它每次只对信号的低频部分进行逐次分解,高频段的频率分辨率较差。小波包分解正好弥补了多分辨率分析高频部分频率分辨率差的不足,能对多分辨率分析没有细分的高频部分进一步分解,是一种更为精细的分析方法,具有更高的频率分辨率,能有效诊断出电机故障的类型

        一个系统出现故障时,其传递函数就会改变,不同频率成分的幅频特性和相频特性都会改变。它对输出信号各频率成分的抑制和增强作用也会产生明显的改变。与正常系统的输出相比,相同频带内信号的能量会有较大的差别。小波包技术将信号中不同分量无冗余、无疏漏、正交地分解到独立的频带内,这些子频带里信号的能量对于状态监测和故障诊断都是十分有用的信息。由于振动、噪声信号中各频率成分信号的能量中包含着丰富的故障信息,某种或某几种频率成分的改变即代表了一种故障,因此与传统的频谱分析相比,更合理的方法是按频带进行能量检测。
        将按照能量方式表示的小波包分解结果称为小波包能量谱。在小波包能量谱中,可以选取各个子空间(频带)内信号的平方和作为能量的标志,对于子空间,小波变换结果表示为序列,其n为该子空间的样本长度,其能量,为:

        小波包能量谱描述了信号的能量分布特征,相对于FFT频谱分析选取某些特征频率的幅值进行分析,小波包能量谱分析了各个频带信号的全部能量,包括非平稳、非线性振动能量,如摩擦、碰撞、松动等,所以,小波包能量谱分析更具有合理性

二、实验数据处理 (预处理,滤波,取均值,剔除异点)
特征提取的基本任务是从许多特征向量中找出那些最有效的特征向量,以降低向量的空间维数,设计出更有效的状态分类器。
信号的功率谱能够反映信号能量的随机分布情况,当信号中的频率成分的能量比发生变化时,功率谱的重心位置也将会发生变化;另一方面,当信号的频率成分增多时,功率谱上的能量分布将表现为集中。因此,通过功率谱重心位置的变化以及谱能量分布的分散程度,可以较好地反映出信号频域特征的变化。本文做功率谱时采用的是对周期图改进的Welch方法。

 

文章《Graph Wavelet Neural Network》

传统GCN存在的问题:






 


  • 3
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值