图像滤波
滤波是信号处理中的一个概念,我们可以把图像视为一种二维信号。在图像处理中,滤波是经常用到的技术,滤波是很多图像算法的基础或前置步骤,掌握图像滤波对卷积神经网络也有一定帮助。
滤波的分类
-
线性滤波
对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:均值滤波、高斯滤波、盒子滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模版系数不同。
-
非线性滤波
非线性滤波利用原始图像跟模版之间的一种逻辑关系得到结果,如最值滤波器,中值滤波器。比较常用的有中值滤波器和双边滤波器。
常用滤波
-
均值滤波
应用
均值模糊可以模糊图像以便得到感兴趣物体的粗略描述,也就是说,去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域,从而对图像有一个整体的认知。即为了对感兴趣的物体得到一个大致的整体的描述而模糊一幅图像,忽略细小的细节。
缺点
均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声。
均值滤波是上述方框滤波的特殊情况,均值滤波方法是:对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素组成,用模板的均值(方框滤波归一化)来替代原像素的值。公式表示为:
g ( x , y ) = 1 n ∑ I ∈ N e i g h b o u r I ( x , y ) g(x,y)=\frac{1}{n}\sum\limits_{I\in{Neighbour}}{I(x,y)} g(x,y)=n1I∈Neighbour∑I(x,y)
g ( x , y ) g(x,y) g(x,y)为该邻域的中心像素, n n n跟系数模版大小有关,一般3*3邻域的模板, n n n取为9,如:
[ 1 1 1 1 1 1 1 1 1 ] \begin{bmatrix} 1&1&1\\ 1&1&1\\ 1&1&1\\ \end{bmatrix} ⎣⎡111111111⎦⎤ -
方框(盒子)滤波
方框滤波是一种非常有用的线性滤波,也叫盒子滤波,均值滤波就是盒子滤波归一化的特殊情况。
应用
可以说,一切需要求某个邻域内像素之和的场合,都有方框滤波的用武之地,比如:均值滤波、引导滤波、计算Haar特征等等。
优势
速度快,它可以使复杂度为 O ( M N ) O(MN) O(MN)的求和,求方差等运算降低到 O ( 1 ) O(1) O(1)或近似于 O ( 1 ) O(1) O(1)的复杂度,也就是说与邻域尺寸无关了,有点类似积分图吧,但是比积分图更快(与它的实现方式有关)。
在原理上,是采用一个卷积核与图像进行卷积:
K = α [ 1 1 ⋯ 1 1 1 ⋯ 1 ⋮ ⋮ ⋱ ⋮ 1 1 ⋯ 1 ] K=\alpha\begin{bmatrix} 1&1&{\cdots}&1\\ 1&1&{\cdots}&1\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ 1&1&{\cdots}&1\\ \end{bmatrix} K=α⎣⎢⎢⎢⎡11⋮111⋮1⋯⋯⋱⋯11⋮1⎦⎥⎥⎥⎤
其中
α = { 1 k s i z e w i d t h ∗ k s i z e h e i g h t n o r m a l i z e = t r u e 1 o t h e r w i s e \alpha=\begin{cases} \frac{1}{ksize_{width}*ksize_{height}}\qquad & normalize = true \\ 1\qquad & otherwise \end{cases} α={ksizewidth∗ksizeheight11normalize=trueotherwise
可见,归一化了就是均值滤波;不归一化则可以计算每个像素邻域上的各种积分特性,方差、协方差,平方和等等。 -
高斯滤波
高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声,如传统车牌识别等。
高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小,更能够保持图像的整体细节。
二维高斯分布
高斯分布公式:
f ( x , y ) = 1 ( 2 π σ ) 2 e − ( x − w x ) 2 + ( y − x y ) 2 2 σ 2 f(x,y)=\frac{1}{(\sqrt{2\pi}\sigma)^2}e^{-\frac{(x-wx)^2+(y-xy)^2}{2\sigma^2}} f(x,y)=(2πσ)21e−2σ2(x−wx)2+(y−xy)2
我们不关心系数,系数只是一个常数,并不会影响互相之间的比例关系,并且最终都要进行归一化,所以在实际计算时我们忽略它只计算后半部分:
f ( x , y ) = e − ( x − w x ) 2 + ( y − x y ) 2 2 σ 2 f(x,y)=e^{-\frac{(x-wx)^2+(y-xy)^2}{2\sigma^2}} f(x,y)=e−2σ2(x−wx)2+(y−xy)2
其中(x,y)为掩膜内任一点的坐标,(ux,uy)为掩膜内中心点的坐标,在图像处理中可认为是整数;σ是标准差。例如:要产生一个3×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)。
( − 1 , 1 ) ( 0 , 1 ) ( 1 , 1 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( − 1 , − 1 ) ( 0 , − 1 ) ( 1 , 1 ) \begin{matrix} (-1,1) & (0,1) & (1,1) \\ (-1,0) & (0,0) & (1,0) \\ (-1,-1) & (0,-1) & (1,1) \\ \end{matrix} (−1,1)(−1,0)(−1,−1)(0,1)(0,0)(0,−1)(1,1)(1,0)(1,1)
将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。
对于窗口模板的大小为 (2k+1)×(2k+1),模板中各个元素值的计算公式如下:
H i , j = 1 2 π σ 2 e − ( i − k − 1 ) 2 + ( j − k − 1 ) 2 2 σ 2 H_{i,j}=\frac{1}{2\pi\sigma^2}e^{-\frac{(i-k-1)^2+(j-k-1)^2}{2\sigma^2}} Hi,j=2πσ21e−2σ2(i−k−1)2+(j−k−1)2
计算出来的模板有两种形式:小数和整数。 -
小数形式的模板,就是直接计算得到的值,没有经过任何的处理;
-
整数形式的,则需要进行归一化处理,将模板左上角的值归一化为1,具体介绍请看这篇博文。使用整数的模板时,需要在模板的前面加一个系数,系数为模板系数和的倒数。