计算机视觉笔记04_图像滤波

图像滤波

滤波是信号处理中的一个概念,我们可以把图像视为一种二维信号。在图像处理中,滤波是经常用到的技术,滤波是很多图像算法的基础或前置步骤,掌握图像滤波对卷积神经网络也有一定帮助。

滤波的分类

  • 线性滤波

    对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:均值滤波、高斯滤波、盒子滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模版系数不同。

  • 非线性滤波

    非线性滤波利用原始图像跟模版之间的一种逻辑关系得到结果,如最值滤波器,中值滤波器。比较常用的有中值滤波器双边滤波器

常用滤波

  • 均值滤波

    应用

    均值模糊可以模糊图像以便得到感兴趣物体的粗略描述,也就是说,去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域,从而对图像有一个整体的认知。即为了对感兴趣的物体得到一个大致的整体的描述而模糊一幅图像,忽略细小的细节。

    缺点

    均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声。

    均值滤波是上述方框滤波的特殊情况,均值滤波方法是:对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素组成,用模板的均值(方框滤波归一化)来替代原像素的值。公式表示为:
    g ( x , y ) = 1 n ∑ I ∈ N e i g h b o u r I ( x , y ) g(x,y)=\frac{1}{n}\sum\limits_{I\in{Neighbour}}{I(x,y)} g(x,y)=n1INeighbourI(x,y)
    g ( x , y ) g(x,y) g(x,y)为该邻域的中心像素, n n n跟系数模版大小有关,一般3*3邻域的模板, n n n取为9,如:
    [ 1 1 1 1 1 1 1 1 1 ] \begin{bmatrix} 1&1&1\\ 1&1&1\\ 1&1&1\\ \end{bmatrix} 111111111

  • 方框(盒子)滤波

    方框滤波是一种非常有用的线性滤波,也叫盒子滤波,均值滤波就是盒子滤波归一化的特殊情况。

    应用

    可以说,一切需要求某个邻域内像素之和的场合,都有方框滤波的用武之地,比如:均值滤波、引导滤波、计算Haar特征等等。

    优势

    速度快,它可以使复杂度为 O ( M N ) O(MN) O(MN)的求和,求方差等运算降低到 O ( 1 ) O(1) O(1)或近似于 O ( 1 ) O(1) O(1)的复杂度,也就是说与邻域尺寸无关了,有点类似积分图吧,但是比积分图更快(与它的实现方式有关)。

    在原理上,是采用一个卷积核与图像进行卷积:
    K = α [ 1 1 ⋯ 1 1 1 ⋯ 1 ⋮ ⋮ ⋱ ⋮ 1 1 ⋯ 1 ] K=\alpha\begin{bmatrix} 1&1&{\cdots}&1\\ 1&1&{\cdots}&1\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ 1&1&{\cdots}&1\\ \end{bmatrix} K=α111111111
    其中
    α = { 1 k s i z e w i d t h ∗ k s i z e h e i g h t n o r m a l i z e = t r u e 1 o t h e r w i s e \alpha=\begin{cases} \frac{1}{ksize_{width}*ksize_{height}}\qquad & normalize = true \\ 1\qquad & otherwise \end{cases} α={ksizewidthksizeheight11normalize=trueotherwise
    可见,归一化了就是均值滤波;不归一化则可以计算每个像素邻域上的各种积分特性,方差、协方差,平方和等等。

  • 高斯滤波

    高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声,如传统车牌识别等。

    高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小,更能够保持图像的整体细节。

    二维高斯分布
    高斯分布公式:
    f ( x , y ) = 1 ( 2 π σ ) 2 e − ( x − w x ) 2 + ( y − x y ) 2 2 σ 2 f(x,y)=\frac{1}{(\sqrt{2\pi}\sigma)^2}e^{-\frac{(x-wx)^2+(y-xy)^2}{2\sigma^2}} f(x,y)=(2π σ)21e2σ2(xwx)2+(yxy)2
    我们不关心系数,系数只是一个常数,并不会影响互相之间的比例关系,并且最终都要进行归一化,所以在实际计算时我们忽略它只计算后半部分:
    f ( x , y ) = e − ( x − w x ) 2 + ( y − x y ) 2 2 σ 2 f(x,y)=e^{-\frac{(x-wx)^2+(y-xy)^2}{2\sigma^2}} f(x,y)=e2σ2(xwx)2+(yxy)2
    其中(x,y)为掩膜内任一点的坐标,(ux,uy)为掩膜内中心点的坐标,在图像处理中可认为是整数;σ是标准差。

    例如:要产生一个3×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)。
    ( − 1 , 1 ) ( 0 , 1 ) ( 1 , 1 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( − 1 , − 1 ) ( 0 , − 1 ) ( 1 , 1 ) \begin{matrix} (-1,1) & (0,1) & (1,1) \\ (-1,0) & (0,0) & (1,0) \\ (-1,-1) & (0,-1) & (1,1) \\ \end{matrix} (1,1)(1,0)(1,1)(0,1)(0,0)(0,1)(1,1)(1,0)(1,1)
    将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。
    对于窗口模板的大小为 (2k+1)×(2k+1),模板中各个元素值的计算公式如下:
    H i , j = 1 2 π σ 2 e − ( i − k − 1 ) 2 + ( j − k − 1 ) 2 2 σ 2 H_{i,j}=\frac{1}{2\pi\sigma^2}e^{-\frac{(i-k-1)^2+(j-k-1)^2}{2\sigma^2}} Hi,j=2πσ21e2σ2(ik1)2+(jk1)2
    计算出来的模板有两种形式:小数和整数。

  • 小数形式的模板,就是直接计算得到的值,没有经过任何的处理;

  • 整数形式的,则需要进行归一化处理,将模板左上角的值归一化为1,具体介绍请看这篇博文。使用整数的模板时,需要在模板的前面加一个系数,系数为模板系数和的倒数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值