Stacking算法分析与案例调参实例
Stacking方法是一种分层模型集成框架。以两层为例,首先将数据集分成训练集和测试集,利用训练集训练得到多个初级学习器,然后用初级学习器对测试集进行预测,并将输出值作为下一阶段训练的输入值,最终的标签作为输出值,用于训练次级学习器(通常最后一级使用Logistic回归)。由于两次所使用的训练数据不同,因此可以在一定程度上防止过拟合。
由于要进行多次训练,因此这种方法要求训练数据很多,为了防止发生划分训练集和测试集后,测试集比例过小,生成的次级学习器泛化性能不强的问题,通常在Stacking算法中会使用我们上次讲到的交叉验证法或留一法来进行训练。
用下面的图来举例说明Stacking:
1、首先我们会得到两组数据:训练集和测试集。将训练集分成5份:train1,train2,train3,train4,train5。
2、选定基模型。这里假定我们选择了xgboost, lightgbm 和 randomforest 这三种作为基模型。比如xgboost模型部分:依次用train1,train2,train3,train4,train5作为验证集,其余4份作为训练集,进行5折交叉验证进行模型训练;再在测试集上进行预测。这样会得到在训练集上由xgboost模型训练出来的5份predictions,和在测试集上的1份预测值B1。将这五份纵向重叠合并起来得到A1。
lightgbm和randomforest模型部分同理。
3、三个基模型训练完毕后,将三个模型在训练集上的预测值作为分别作为3个"特征"A1,A2,A3,使用LR模型进行训练,建立LR模型。
4、使用训练好的LR模型,在三个基模型之前在测试集上的预测值所构建的三个"特征"的值(B1,B2,B3)上,进行预测,得出最终的预测类别或概率。
在sklearn库中暂时还没有支持Stacking算法的,因此使用mlxtend来实现(pip install mlxtend)
1.简单堆叠3折CV分类
from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingCVClassifier
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target
RANDOM_SEED = 42
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=RANDOM_SEED)
clf3 = GaussianNB()
lr = LogisticRegression()
# Starting from v0.16.0, StackingCVRegressor supports
# `random_state` to get deterministic result.
sclf = StackingCVClassifier(classifiers=[clf1, clf2, clf3], # 第一层分类器
meta_classifier=lr, # 第二层分类器
random_state=RANDOM_SEED)
print('3-fold cross validation:\n')
for clf, label in zip([clf1, clf2, clf3, sclf], ['KNN', 'Random Forest', 'Naive Bayes','StackingClassifier']):
scores = cross_val_score(clf, X, y, cv=3, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
运行结果
3-fold cross validation:
Accuracy: 0.91 (+/- 0.01) [KNN]
Accuracy: 0.95 (+/- 0.01) [Random Forest]
Accuracy: 0.91 (+/- 0.02) [Naive Bayes]
Accuracy: 0.93 (+/- 0.02) [StackingClassifier]
画出决策边界
from mlxtend.plotting import plot_decision_regions
import matplotlib.gridspec as gridspec
import itertools
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10,8))
for clf, lab, grd in zip([clf1, clf2, clf3, sclf],
['KNN',
'Random Forest',
'Naive Bayes',
'StackingCVClassifier'],
itertools.product([0, 1], repeat=2)):
clf.fit(X, y)
ax = plt.subplot(gs[grd[0], grd[1]])
fig = plot_decision_regions(X=X, y=y, clf=clf)
plt.title(lab)
plt.show()
2. 使用概率作为元特征
使用第一层所有基分类器所产生的类别概率值作为meta-classfier的输入。需要在StackingClassifier 中增加一个参数设置:use_probas = True。
另外,还有一个参数设置average_probas = True,那么这些基分类器所产出的概率值将按照列被平均,否则会拼接。
例如:
基分类器1:predictions=[0.2,0.2,0.7]
基分类器2:predictions=[0.4,0.3,0.8]
基分类器3:predictions=[0.1,0.4,0.6]
1)若use_probas = True,average_probas = True,
则产生的meta-feature 为:[0.233, 0.3, 0.7]
2)若use_probas = True,average_probas = False,
则产生的meta-feature 为:[0.2,0.2,0.7,0.4,0.3,0.8,0.1,0.4,0.6]
from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingCVClassifier
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingCVClassifier(classifiers=[clf1, clf2, clf3],
use_probas=True,
meta_classifier=lr,
random_state=42)
print('3-fold cross validation:\n')
for clf, label in zip([clf1, clf2, clf3, sclf],
['KNN',
'Random Forest',
'Naive Bayes',
'StackingClassifier']):
scores = cross_val_score(clf, X, y, cv=3, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]"
% (scores.mean(), scores.std(), label))
运行结果
3-fold cross validation:
Accuracy: 0.91 (+/- 0.01) [KNN]
Accuracy: 0.95 (+/- 0.01) [Random Forest]
Accuracy: 0.91 (+/- 0.02) [Naive Bayes]
Accuracy: 0.95 (+/- 0.02) [StackingClassifier]