安装pytorch环境踩的坑
1.盲目安装cuda,cuDNN,没查看自己显卡驱动,版本很重要!!!
帮助-》系统信息(I)
系统信息-》组件
这是最高版本,向下兼容,不是说一定要装这个版本,cuda版本和这个没有一一对应的要求,只要不超过这个版本就行。
2、我选择下cuda11.0版本,这是cuda官网https://developer.nvidia.com/cuda-toolkit-archive
cuda官网
下完cuda之后我再去下载cuDNN:对了cuda的安装最好是默认路径,选默认的就行。
cuDNN官网
cuDNN下载需要注册一个会员号,我在这里也卡了很久,我听说QQ邮箱不太好使,我反正注册了很久收不到验证码邮件,终于注册好了之后,登录进去又石沉大海了。但是好像分人,我有认识的学长他就没啥问题,可以用别人的电脑下载下来,反正这个是一个压缩包,到时候再拷到自己电脑来就行。
我的cuda是11.0,所以我选择的是v8.4.0
下载这个压缩包
解压之后会得到三个文件夹,把这三个文件夹的东西,复制粘贴到cuda对应的文件里。
比如说我自己:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0
这是我的cuda,接下来我要做的事情是把刚刚cuDNN解压得到的三个文件夹里的东西复制粘贴到这里的文件夹里,cuDNN-bin对应cuda的bin,cuDNN的include对应cuda的include,cuDNN的lib里的东西复制粘贴到cuda里的lib
3、到此 我们已经搞好了cuda和cuDNN,接下来就是下载pytorch了。
下载anaconda,
anaconda官网
建议官网直接下载,慢是慢了点,但是稳妥,如果这时候你是小白,再配置个啥国内的镜像源,更懵逼。简单点,下载的方式简单点~对了这提醒下,如果你真的配置了国内的镜像源,记得把梯子撤掉,否则会报proxy的error。
anaconda的下载到最后记得勾选路径,虽然官方是不建议,啥啥爆红的选项,但是我个人觉得这样会方便很多,要是不在安装的时候把路径添加到环境变量,后期自己还得配置,本来配置环境就很麻烦,这无形之中又给自己添堵了。
4、开始界面 找到anaconda prompt
就是一个黑窗口,输入conda create -n pyt python=3.8
然后再激活这个虚拟环境:conda activate pyt
到这里就得去pytorch官网下载真正的pytorch了pytorch官网
去官网复制指令conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
这里我想起来了,我终究还是配置了清华的镜像源,具体操作我也懵,就是往CMD里面复制粘贴了好几行channel,大家可以移步搜索怎么添加pytorch清华镜像源,因为配置了清华镜像源所以上面指令我就有所变动,首先我要下载的是cudatoolkit11.0版本,其次-c pytorch 是默认从国外原来的网址下的,我得删掉它才会从清华镜像源下载。
所以我的指令最后是conda install pytorch torchvision torchaudio cudatoolkit=11.0
下载过程中它会有个y/n的选项,你就输入y,然后就等着它安装。
5.然后接下来要安装torch 和torchvision
,我也很疑惑,按理说之前应该装好了啊,但是我学长要我手动离线下载对应的版本
我们来一一查看,我的cudatoolkit是11.0,所以我的torch也就是下表中的pytorch版本对应的是1.7.1或者1.7.0,然后再抓着我的torch往下看torchvision版本,这里我选择torch版本为1.7.1,所以往下看torchvision版本应该是0.8.2。好了 我现在要明确两个东西的版本,torch1.7.1,torchvision0.8.2
离线下载torch和torchvision的网址
因为我是python3.8所以我选的是cp38,版本是1.7.1,往下翻翻再找找torchvision找到0.8.2版本的
再接着碎碎念,这里面很多东西,大家一定要看仔细了,Windows 64位系统,别下载Linux或者Mac系统的文件了。
下载这两个文件后,记得下载之后保存在哪里。
这时候再切回去刚刚conda activate pyt
的页面,通过cd指令进入我们保存torch和torchvision的文件夹下
然后
pip install torch-1.7.1+cu101-cp38-cp38-win_amd64.whl
pip install torchvision-0.8.2+cu101-cp38-cp38-win_amd64.whl
这样就搞定了,最后输入python,导入torch模块,查看是否可以使用cuda
具体指令
python
import torch
torch.cuda.is_available()
总结下吧:
- 版本向下去下载cuda和cudnn
- 下载对应版本pytorch
- 离线下载安装torch和torchvision注意是cuda版本的,不是cpu版本的
这三个步骤把版本一一对应好,一般不会有问题了,作为一个给三台电脑配置过环境的人如是说。