路径与连通性

一、路径

相邻顶点之间的边称为路径。
回路:起点和终点相同的路径称为回路。
简单路径:各个顶点都互不相同的路径称为简单路径。
圈:从一个起点出发,经过互不相同的顶点后,然后再回到起点的一条路径成为圈。

二、连通性

如果一个无向图每一对顶点之间都至少存在一条路径,则称为是连通的,否则就称该图是不连通的。一个不连通图是由多个连通片组成。连通片是满足如下两个条件的子图:
(1)连通性:子图中任意两个顶点之间都存在路径。
(2)孤立性:不属于该子图的任意顶点与子图中的任意顶点之间都不存在路径。
包含顶点数最多的连通片称为最大连通片。下图为包含两个连通片的一个不连通图。
在这里插入图片描述
不连通网络的邻接矩阵可以通过对节点适当编号写为如下的块对角的形式。
在这里插入图片描述

三、路径与连通性的邻接矩阵表示

1、用邻接矩阵表示两点之间的路径数量

我们用邻接矩阵A=(a i j _{ij} ij N ∗ N _{N*N} NN来表示一个网络中两个节点之间的路径数量。
如果节点i到节点j之间有1条边,那么就存在一条长度为1的路径。若存在长度为2的路径,意味着中间还有一个节点k,k到i和j的路径都为1。所以,两个节点之间长度为2的不同路径数量为:
在这里插入图片描述
当且仅当(A 2 ^2 2) i j _{ij} ij>0时存在长度为2的路径。
同理,可以推得两个节点i和j之间长度r>=1的不同路径数量为:
在这里插入图片描述
我们定义两个节点的距离为这两个节点之间的最短路径长度。节点i到节点j之间的距离不超过r>=1当且仅当在这里插入图片描述
从而得到如下判据:
一个网络是连通的当且仅当I+A+A 2 ^2 2+…+A N − 1 ^{N-1} N1是正矩阵,即所有元素都为正数。

2、可约与不可约

若存在顺列矩阵(即每行只有一个元素为1,其他元素均为0的正交矩阵)U,使得以下等式成立
在这里插入图片描述
则称矩阵A可约;若不存在这样的矩阵U,则称矩阵A不可约。
因为节点i到j之间存在路径等价于邻接矩阵的元素不为0,由此可推得如下结论:一个网络是连通的当且仅当其邻接矩阵不可约。

四、割集与Menger定理

1、Menger定理

(1)点形式:设顶点s和顶点t为图G中两个不相邻的顶点,则使顶点s和顶点t分别属于不同的连通片所需去除的顶点的最少数目等于连接顶点s和顶点t的独立的简单路径的最大数目。
(2)边形式:设顶点s和顶点t为图G中两个不同的顶点,则使顶点s和顶点t分别属于不同的连通片所需去除的边的最少数目等于连接顶点s和顶点t的不相交的简单路径的最大数目。
注意:连接顶点s和顶点t的两条简单路径是独立的,是指这两条路径的公共顶点只有顶点s和顶点t。连接两个顶点的简单路径称为是不相交的是指这两条路径没有经过一条相同的边。

2、割集

(1)点割集:使得一对顶点分属于不同的连通片所需去除的一组顶点称为这对顶点的点割集。
(2)边割集:使得一对顶点分属于不同的连通片所需取出的一组边称为这对顶点的边割集。
(3)极小割集:包含顶点数或边数最少的割集称为极小割集。

五、有向图的连通性

在一个有向图中采取如下操作:如果两个顶点之间只有一条单向边,那么就忝加一条反方向的边。如果经过这样添加边的操作之后所得到的新的有向图是强连通的,那么就称原来的有向图是弱连通的。
给定一个有向图的一对顶点A和B,我们可以按以下方法确定是否存在从节点A到节点B的路径:首先确定节点A和节点B所在的强连通片。如果节点A和B属于同一强连通片,那么从节点A到B和从节点B到A的路径都是存在的;否则的话,我们就看是否存在从节点A所在的强连通片指向节点B所在的强连通片的边:如果存在,那么就存在从节点A到节点B的路径;否则就肯定不存在这样的路径。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值