深度学习

深度学习之坑(1)

为进一步提升深度学习训练精度,必须要更新网络框架,由于上一次用的是20世纪90年代的网络框架,对于目前的一些图片识别分类肯定是不行的,所以,就对近些年的一些网络框架进行了一些搜索,发现有VGG、AlexNet、GoogleNet、Resnet、DESNet以及一些轻量级网络MobileNet、ShuffleNet等等,对比了一下各个网络框架的优缺点,我觉得我的数据集还是适合一些网络层数中等,训练速度快的网络框架,所以就选择了GoogleNet中的Inception_v3模型,并配合迁移学习,节约时间。

Inception_v3网络框架

Inception_v3模型我就不再进行介绍了,网上介绍一大堆,还是节约时间进入正题吧。

前期准备

①下载谷歌训练好的Inception_v3模型文件,压缩包链接:https://pan.baidu.com/s/1lKEJhczsayS38gzeAo3tXQ
提取码:64g3
对其进行解压,主要就是要用到里面的pb文件,
在这里插入图片描述
废话少说,直接上代码,数据集就是上期用在LeNet网络模型上的煤料图片。

#导入相应的包
import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile



#Inception-v3 模型瓶颈层的节点个数
BOTTLENECK_TENSOR_SIZE = 2048
#模型中代表瓶颈层张量的名称
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
#图像输入张量所对应的名称
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
#下载的谷歌训练好的Inception-v3模型文件目录
MODEL_DIR = 'C:/Users/zzw/Desktop/1/inception_v3/inception_model'
#Inception-v3模型文件名
MODEL_FILE = 'tensorflow_inception_graph.pb'
#因为一个训练数据会被使用很多次,所以可以将原始图像通过nception-v3模型计算得到的特征向量保存到文件中
CACHE_DIR = 'C:/Users/zzw/Desktop/1/inception_v3/bottleneck'
#输入图片的文件位置
INPUT_DATA = 'K:/split_image/raw'

#验证的数据百分比
VALIDATION_PERCENTAGE = 10 
#测试的数据百分比52
TEST_PERCENTAGE = 10

#定义神经网络的设置
LEARNING_RATE = 0.01
STEPS = 50000
BATCH = 10


# 这个函数从数据文件夹中读取所有的图片列表并按训练、验证、测试数据分开。
# testing_percentage和validation_percentage参数指定了测试数据集和验证数据集的大小。
def create_image_lists(testing_percentage, validation_percentage):
    # 得到的所有图片都存在result这个字典(dictionary)里。
    # 这个字典的key为类别的名称,value也是一个字典,字典里存储了所有的图片名称。
    result = {}
    # 获取当前目录下所有的子目录
    sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
    # 得到的第一个目录是当前目录,不需要考虑
    is_root_dir = True
    for sub_dir in sub_dirs:
        if is_root_dir:
            is_root_dir = False
            continue

        # 获取当前目录下所有的有效图片文件。
        

        extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
        file_list = []
        dir_name = os.path.basename(sub_dir)
        for extension in extensions:
            file_glob = os.path.join(INPUT_DATA, dir_name, '*.'+extension)
            file_list.extend(glob.glob(file_glob))
            
       
        if not file_list:
            continue
        
        

        # 通过目录名获取类别的名称。
        label_name = dir_name.lower()
        # 初始化当前类别的训练数据集、测试数据集和验证数据集
        training_images = []
        testing_images = []
        validation_images = []
        for file_name in file_list:
            base_name = os.path.basename(file_name)
            # 随机将数据分到训练数据集、测试数据集和验证数据集。
            chance = np.random.randint(100)
            if chance < validation_percentage:
                validation_images.append(base_name)
            elif chance < (testing_percentage + validation_percentage):
                testing_images.append(base_name)
            else:
                training_images.append(base_name)

        # 将当前类别的数据放入结果字典。
        result[label_name] = {
            'dir': dir_name,
            'training': training_images,
            'testing': testing_images,
            'validation': validation_images
            }
    # 返回整理好的所有数据
    return result


# 这个函数通过类别名称、所属数据集和图片编号获取一张图片的地址。
# image_lists参数给出了所有图片信息。
# image_dir参数给出了根目录。存放图片数据的根目录和存放图片特征向量的根目录地址不同。
# label_name参数给定了类别的名称。
# index参数给定了需要获取的图片的编号。
# category参数指定了需要获取的图片是在训练数据集、测试数据集还是验证数据集。
def get_image_path(image_lists, image_dir, label_name, index, category):
    # 获取给定类别中所有图片的信息。
    label_lists = image_lists[label_name]
    # 根据所属数据集的名称获取集合中的全部图片信息。
    category_list = label_lists[category]
    mod_index = index % len(category_list)
    # 获取图片的文件名。
    base_name = category_list[mod_index]
    sub_dir = label_lists['dir']
    # 最终的地址为数据根目录的地址 + 类别的文件夹 + 图片的名称
    full_path = os.path.join(image_dir, sub_dir, base_name)
    return full_path


# 这个函数通过类别名称、所属数据集和图片编号获取经过Inception-v3模型处理之后的特征向量文件地址。
def get_bottlenect_path(image_lists, label_name, index, category):
    return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt';


# 这个函数使用加载的训练好的Inception-v3模型处理一张图片,得到这个图片的特征向量。
def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):
    # 这个过程实际上就是将当前图片作为输入计算瓶颈张量的值。这个瓶颈张量的值就是这张图片的新的特征向量。
    bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})
    # 经过卷积神经网络处理的结果是一个四维数组,需要将这个结果压缩成一个特征向量(一维数组)
    bottleneck_values = np.squeeze(bottleneck_values)
    return bottleneck_values


# 这个函数获取一张图片经过Inception-v3模型处理之后的特征向量。
# 这个函数会先试图寻找已经计算且保存下来的特征向量,如果找不到则先计算这个特征向量,然后保存到文件。
def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):
    # 获取一张图片对应的特征向量文件的路径。
    label_lists = image_lists[label_name]
    sub_dir = label_lists['dir']
    sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
    if not os.path.exists(sub_dir_path):
        os.makedirs(sub_dir_path)
    bottleneck_path = get_bottlenect_path(image_lists, label_name, index, category)
    # 如果这个特征向量文件不存在,则通过Inception-v3模型来计算特征向量,并将计算的结果存入文件。
    if not os.path.exists(bottleneck_path):
        # 获取原始的图片路径
        image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)
        # 获取图片内容。
        image_data = gfile.FastGFile(image_path, 'rb').read()
        # print(len(image_data))
        # 由于输入的图片大小不一致,此处得到的image_data大小也不一致(已验证),但却都能通过加载的inception-v3模型生成一个2048的特征向量。具体原理不详。
        # 通过Inception-v3模型计算特征向量
        bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)
        # 将计算得到的特征向量存入文件
        bottleneck_string = ','.join(str(x) for x in bottleneck_values)
        with open(bottleneck_path, 'w') as bottleneck_file:
            bottleneck_file.write(bottleneck_string)
    else:
        # 直接从文件中获取图片相应的特征向量。
        with open(bottleneck_path, 'r') as bottleneck_file:
            bottleneck_string = bottleneck_file.read()
        bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
    # 返回得到的特征向量
    return bottleneck_values


# 这个函数随机获取一个batch的图片作为训练数据。
def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category,
                                  jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    for _ in range(how_many):
        # 随机一个类别和图片的编号加入当前的训练数据。
        label_index = random.randrange(n_classes)
        label_name = list(image_lists.keys())[label_index]
        image_index = random.randrange(65536)
        bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, category,
                                              jpeg_data_tensor, bottleneck_tensor)
        ground_truth = np.zeros(n_classes, dtype=np.float32)
        ground_truth[label_index] = 1.0
        bottlenecks.append(bottleneck)
        ground_truths.append(ground_truth)
    return bottlenecks, ground_truths


# 这个函数获取全部的测试数据。在最终测试的时候需要在所有的测试数据上计算正确率。
def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    label_name_list = list(image_lists.keys())
    # 枚举所有的类别和每个类别中的测试图片。
    for label_index, label_name in enumerate(label_name_list):
        category = 'testing'
        for index, unused_base_name in enumerate(image_lists[label_name][category]):
            # 通过Inception-v3模型计算图片对应的特征向量,并将其加入最终数据的列表。
            bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, index, category,
                                                  jpeg_data_tensor, bottleneck_tensor)
            ground_truth = np.zeros(n_classes, dtype = np.float32)
            ground_truth[label_index] = 1.0
            bottlenecks.append(bottleneck)
            ground_truths.append(ground_truth)
    return bottlenecks, ground_truths


def main(_):
    # 读取所有的图片
    image_lists = create_image_lists(VALIDATION_PERCENTAGE, TEST_PERCENTAGE)
    n_classes = len(image_lists.keys())

    with tf.Graph().as_default() as graph:
        # 读取训练好的inception-v3模型
        with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
    # 加载读取的Inception-v3模型,并返回数据输入所对应的张量以及计算瓶颈层结果所对应的张量。
        bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(graph_def, return_elements=[BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])
    # 定义新的神经网络输入,这个输入就是新的图片经过Inception-v3模型前向传播到达瓶颈层时的结点取值。
    # 可以将这个过程类似的理解为一种特征提取。
        bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')
    # 定义新的标准答案输入
        ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')
    # 定义一层全连接层来解决新的图片分类问题。
    # 因为训练好的Inception-v3模型已经将原始的图片抽象为了更加容易分类的特征向量了,所以不需要再训练那么复杂的神经网络来完成这个新的分类任务。
        with tf.name_scope('final_training_ops'):
            weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))
            biases = tf.Variable(tf.zeros([n_classes]))
            logits = tf.matmul(bottleneck_input, weights) + biases
            final_tensor = tf.nn.softmax(logits)
    # 定义交叉熵损失函数
        cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        tf.summary.scalar('loss', cross_entropy_mean)
        train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)
    # 计算正确率
        with tf.name_scope('evaluation'):
            correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
            evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # 训练过程
        with tf.Session(graph=graph) as sess:
            init = tf.global_variables_initializer().run()

        # 模型和摘要的保存目录
            import time
            timestamp = str(int(time.time()))
            out_dir = os.path.abspath(
                    os.path.join(os.path.curdir, 'K:/spilt_log/', timestamp))
            print('\nWriting to {}\n'.format(out_dir))
            # 损失值和正确率的摘要
            loss_summary = tf.summary.scalar('loss', cross_entropy_mean)
            acc_summary = tf.summary.scalar('accuracy', evaluation_step)
            # 训练摘要
            train_summary_op = tf.summary.merge([loss_summary, acc_summary])
            train_summary_dir = os.path.join(out_dir, 'summaries', 'train')
            train_summary_writer = tf.summary.FileWriter(train_summary_dir,
                                                     sess.graph)
            # 开发摘要
            dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
            dev_summary_dir = os.path.join(out_dir, 'summaries', 'dev')
            dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
            # 保存检查点
            

            for i in range(STEPS):
                # 每次获取一个batch的训练数据
                train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(
                        sess, n_classes, image_lists, BATCH, 'training',
                        jpeg_data_tensor, bottleneck_tensor)
                _, train_summaries = sess.run(
                        [train_step, train_summary_op],
                        feed_dict={
                                bottleneck_input: train_bottlenecks,
                                ground_truth_input: train_ground_truth
                                })

                # 保存每步的摘要
                train_summary_writer.add_summary(train_summaries, i)

                # 在验证集上测试正确率
                if i % 100 == 0 or i + 1 == STEPS:
                    validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(
                        sess, n_classes, image_lists, BATCH, 'validation',
                        jpeg_data_tensor, bottleneck_tensor)
                    validation_accuracy, dev_summaries = sess.run(
                        [evaluation_step, dev_summary_op],
                        feed_dict={
                                bottleneck_input: validation_bottlenecks,
                                ground_truth_input: validation_ground_truth
                                    })
                    print(
                            'Step %d : Validation accuracy on random sampled %d examples = %.1f%%'
                            % (i, BATCH, validation_accuracy * 100))
                
                
                #测试
                #if i%100 == 0 or i+1 == STEPS:
                    #test_bottlenecks, test_ground_truth = get_test_bottlenecks(sess, image_lists, n_classes,
                                                                       #jpeg_data_tensor, bottleneck_tensor)
                    #test_accuracy = sess.run(evaluation_step, feed_dict={bottleneck_input: test_bottlenecks,
                                                                 #ground_truth_input: test_ground_truth})
                    #print('Step %d: test accuracy on random sampled %d examples = %.1f%%'
                         #% (i, BATCH, test_accuracy*100))
            
                # 每隔checkpoint_every保存一次模型和测试摘要
                
            # 最后在测试集上测试正确率
            test_bottlenecks, test_ground_truth = get_test_bottlenecks(
                    sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor)
            test_accuracy = sess.run(
                    evaluation_step,
                    feed_dict={
                            bottleneck_input: test_bottlenecks,
                            ground_truth_input: test_ground_truth
                            })
            print('Final test accuracy = %.1f%%' % (test_accuracy * 100))

            # 保存标签
            output_labels = os.path.join(out_dir, 'labels.txt')
            with tf.gfile.FastGFile(output_labels, 'w') as f:
                keys = list(image_lists.keys())
                for i in range(len(keys)):
                    keys[i] = '%2d -> %s' % (i, keys[i])
                    f.write('\n'.join(keys) + '\n')


if __name__ == '__main__':
    tf.app.run()

训练精度以及验证精度如下表:
在这里插入图片描述
后面有一块是对训练过程的一个监测,设置好路径即可,主要是对精度以及Loss值的监测,我用的是TensorBoard,cmd指令为tensorboard:tensorboard --logdir=“K:\spilt_log\1573731106\summaries\train” --host=127.0.0.1
后面的host值其实也要注意,如果不加的话可能会出现一些问题,选取了两产品的监测图如下:
在这里插入图片描述在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值