如何用Ollama在本地构建大语言模型?

目录:
1. 下载 Ollma 安装文件
2. 安装 Ollama
3. (可选)环境变量
4. 使用 Ollama
5. (可选)修改默认模型

Ollama是一个开源框架,设计用于在本地轻松部署和运行大型语言模型(LLMs)。这个工具简化了原本复杂的过程,使得开发者和研究人员能够在自己的机器上直接利用强大的语言模型,而不需要依赖云服务。Ollama支持多种知名的大规模语言模型,如Llama 3、Qwen、Mistral、Gemma等,且持续更新以兼容最新的模型版本。Ollama不仅支持Linux和macOS,还发布了对Windows平台的预览版,这意味着更多用户可以在自己的操作系统上运行这些模型。

我试着运行Llama 3 一下,模型的下载速度非常快,推理速度和推理效果很棒。

1. 下载 Ollma 安装文件
访问 https://ollama.com/download,根据本地机器的系统选择对应的安装版本。我这里选择 Windows,单击 “Download for Windows (Preview)” 进行下载。

2. 安装 Ollama
双击下载的 “OllamaSetup.exe”,直接安装就可以了。

3. (可选)环境变量
Ollama 下载的模型模型保存在 C 盘,如果想更改默认路径的话,可以通过增加系统环境变量 OLLAMA_MODELS。

OLLAMA_MODELS:D:\OllamaModels
还有,Ollama 默认提供 OpenAI 的兼容 API,默认端口是 11434,默认只可以通过 localhost 进行访问,如果想公开访问的话,可以通过设置 OLLAMA_HOST 进行修改。

4. 使用 Ollama
访问 https://ollama.com/library,搜索你要使用的模型,主流的模型,比如 llama3、qwen1.5、mixtral 等,Ollama都支持。

我这里以 llama3 为例,我们要运行 8b 的模型,

打开Windows终端,输入命令:ollama run llama3 运行,Ollama将自动下载llama3:8b模型,完成后进入终端命令行问答模式,你可以直接在上面问问题啦!


5. (可选)修改默认模型
Ollama 默认提供 OpenAI 的兼容 API,默认端口是 11434,默认模型名是 run 后面使用的模型名,如果想使用 OpenAI 的模型名,可以通过ollama cp的方式,为模型起一个临时的名称。

例如,

ollama cp mixtral:8x7b-instruct-v0.1-fp16 gpt-4
ollama run gpt-4
 

<think>嗯,用户问的是如何用Anaconda和Ollama来训练本地部署的DeepSeek模型。首先,我需要确认这几个工具和模型之间的关系。Anaconda是Python的环境管理工具,Ollama是一个用于本地运行大模型的工具,而DeepSeek模型可能是指深度求索公司开发的某个大语言模型,比如DeepSeek-R1或者DeepSeek-V2之类的。 首先,我得想清楚用户的需求。用户可能想在本地训练或微调一个DeepSeek的模型,使用Anaconda管理环境,Ollama来部署。但Ollama目前主要支持的是模型的运行和微调,可能不支持从头训练,所以用户可能指的是微调。不过Ollama支持的模型列表里是否有DeepSeek的模型呢?比如,Ollama的官方模型库里有Llama、Mistral等,但DeepSeek的模型可能需要用户自己导入。所以可能需要先下载DeepSeek的模型文件,转换成Ollama支持的格式。 接下来,步骤大概会是这样的:首先用Anaconda创建Python环境,安装必要的库,比如PyTorch、Transformers等。然后下载DeepSeek的模型,可能是Hugging Face上的,比如deepseek-ai/deepseek-llm-7b-chat这样的模型。接着,可能需要将模型转换为Ollama支持的GGUF格式,使用llama.cpp或者类似工具进行转换。之后,配置Ollama的Modelfile,创建Ollama模型,并进行微调。微调的话需要准备数据集,可能使用Ollama的命令行工具或者编写Python脚本进行参数调整。 不过需要注意,Ollama是否支持微调功能。目前Ollama主要是运行模型,微调可能需要用其他方法,比如Hugging Face的Trainer或者PEFT库来进行参数高效微调。这时候可能需要将Ollama和微调流程分开,Ollama用于部署,而训练部分用Transformers库来处理。 另外,用户可能混淆了训练和微调的概念。如果是本地训练,从头开始训练一个大模型需要大量计算资源,可能不现实。所以更可能的情况是微调预训练的DeepSeek模型。这时候步骤应该是:设置Anaconda环境,安装依赖,加载预训练模型和分词器,准备数据集,配置训练参数,进行微调,然后保存模型,最后用Ollama加载微调后的模型。 不过Ollama的使用流程通常是拉取现有模型,比如ollama run llama2。如果要使用自定义模型,需要创建Modelfile,指定模型路径和参数。因此,可能需要将微调后的模型转换成Ollama支持的格式,比如GGUF,然后通过Modelfile来加载。 总结下来,步骤可能包括:1. 配置Anaconda环境;2. 下载DeepSeek模型;3. 转换模型格式为GGUF;4. 创建Ollama Modelfile;5. 微调模型(可能需要其他工具);6. 部署到Ollama。 同时需要检查DeepSeek模型的许可协议,确保允许微调和本地部署。另外,硬件要求也是一个重点,需要足够的GPU内存。如果用户没有GPU,可能需要用量化模型或者调整参数。 可能遇到的错误包括模型格式不兼容、依赖版本冲突、内存不足等。需要提醒用户注意这些点,并参考相关文档和社区支持。</think>以下是使用 Anaconda 和 Ollama本地训练/微调 DeepSeek 模型的步骤指南(以 **DeepSeek-7B** 为例): --- ### **一、准备工作** 1. **硬件要求** - 建议 NVIDIA GPU(至少 16GB 显存) - 内存建议 32GB+,存储 50GB+ 可用空间 2. **安装 Anaconda** ```bash wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh bash Anaconda3-2024.02-1-Linux-x86_64.sh ``` 3. **安装 Ollama** ```bash curl -fsSL https://ollama.com/install.sh | sh ``` --- ### **二、配置 Anaconda 环境** ```bash conda create -n deepseek python=3.10 conda activate deepseek pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install transformers datasets peft accelerate ``` --- ### **三、获取 DeepSeek 模型** 1. **从 Hugging Face 下载模型** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-llm-7b-chat") tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-chat") model.save_pretrained("./deepseek-7b") ``` 2. **转换为 Ollama 格式 (GGUF)** ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp && make python3 convert.py --outtype f16 ./deepseek-7b ``` --- ### **四、微调训练(示例)** 1. **准备数据集**(JSON 格式) ```json [ {"instruction": "解释量子力学", "input": "", "output": "..."}, {"instruction": "写一首关于春天的诗", "input": "", "output": "..."} ] ``` 2. **使用 PEFT 微调** ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig(r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"]) model = get_peft_model(model, lora_config) # 配置 Trainer 进行训练... ``` --- ### **五、Ollama 本地部署** 1. **创建 Modelfile** ```text FROM ./deepseek-7b/ggml-model-f16.gguf PARAMETER num_ctx 4096 PARAMETER temperature 0.7 ``` 2. **构建并运行模型** ```bash ollama create deepseek-custom -f Modelfile ollama run deepseek-custom ``` --- ### **六、关键注意事项** 1. **量化建议**(显存不足时) ```bash ./quantize ./deepseek-7b/ggml-model-f16.gguf ./deepseek-7b/ggml-model-q4_0.gguf q4_0 ``` 2. **资源监控** - 使用 `nvidia-smi` 监控 GPU 使用 - 训练时建议使用 `accelerate` 库优化分布式训练 3. **官方参考** - DeepSeek 模型库:https://huggingface.co/deepseek-ai - Ollama 文档:https://github.com/ollama/ollama --- 通过以上步骤,您可以在本地实现 DeepSeek 模型的定制化训练与部署。如果遇到显存不足问题,建议尝试更小的量化版本(如 q4_k)或使用参数冻结技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值