()一、Heatmap Loss
1.通过每一个预测框得到每个目标中心位置,
2.对应特征图的目标中心位置为
3.热图相应每个点与每个框中心点的均方差与标准差相除,响应约大表示约接近目标中心点。
当真实图中的Mxy=1时表示只有一个目标且当前点就是目标中心点。多个目标时,目标中心点的Mxy是必定比1大的。
二、Box Loss and Size Loss
1.计算每个预测框的长宽和中心偏移量
(为什么size不需要用特征图的size,而中心偏移量用特征图的中心偏移量)
两个误差都是取向量1范数再相加,size取了一个权重参数
三、re-ID特征误差
为检测对象的特征向量通过全连接层和softmax函数映射为分类概率集合
。一共有i个P集合,i为目标数量
为one-hot处理后的数据真实的类别编码,即用向量新式存储id信息(例如:[0,1,0,0,0,0,0])
k为id数量,当最大的p(k)越大Log(p(k))约接近于0,取值为负数,故在最前面加上了负号