FairMOT 损失函数解析

()一、Heatmap Loss

1.通过每一个预测框得到每个目标中心位置,

2.对应特征图的目标中心位置为

 3.热图相应每个点与每个框中心点的均方差与标准差相除,响应约大表示约接近目标中心点。

当真实图中的Mxy=1时表示只有一个目标且当前点就是目标中心点。多个目标时,目标中心点的Mxy是必定比1大的。

二、Box Loss and Size Loss 

1.计算每个预测框的长宽和中心偏移量

(为什么size不需要用特征图的size,而中心偏移量用特征图的中心偏移量)

两个误差都是取向量1范数再相加,size取了一个权重参数

三、re-ID特征误差

为检测对象的特征向量通过全连接层和softmax函数映射为分类概率集合。一共有i个P集合,i为目标数量

 

为one-hot处理后的数据真实的类别编码,即用向量新式存储id信息(例如:[0,1,0,0,0,0,0])

 k为id数量,当最大的p(k)越大Log(p(k))约接近于0,取值为负数,故在最前面加上了负号

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值