隐马尔可夫模型在地图匹配中的应用

 1、HMM解决的问题

  • 已知模型(初始状态概率、状态转移概率矩阵、观察概率矩阵)和观测序列,求最有可能对应的状态序列。

2、HMM在地图匹配中的应用

  • 未知状态序列:轨迹点在图中对应的的路段序列。
  • 已知观测序列:轨迹点;
  • 已知模型
    • 观察概率:轨迹点对应每条候选路段的概率
    • 转移概率:上一个轨迹点对应的每个候选路段,到当前轨迹点对应的每个候选路段的代价
    • 初始状态概率:第一个轨迹点的观察概率。
  • 求解未知状态序列的方法(轨迹点序列对应的最大概率的路段序列):维特比算法
    • 按照行驶方向,依次遍历每个轨迹点,计算当前轨迹点的观察概率、以及上个轨迹点对应的候选路段到当前轨迹点对应的每个候选路段的转移概率,结合上个轨迹点对应每个路段的维特比概率,可计算出当前轨迹点对应每个路段的维特比概率
    • 最后一个轨迹点对应每个路段的维特比概率,选择概率最大的,回溯对应的整条路段序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值