python opencv双目测距_使用OpenCV/python进行双目测距

本文介绍了如何使用Python和OpenCV进行双目立体视觉的图像处理,包括摄像头标定、图像采集、应用标定数据和转换成深度图的步骤。通过示例代码展示了如何从两个摄像头获取图像,进行双目标定,然后利用StereoBM算法计算出深度图,最终实现测距功能。
摘要由CSDN通过智能技术生成

在作SLAM时,但愿用到深度图来辅助生成场景,因此要构创建体视觉,在这里使用OpenCV的Stereo库和python来进行双目立体视觉的图像处理。python

立体标定

应用标定数据

转换成深度图

标定

在开始以前,须要准备的固然是两个摄相头,根据你的需求将两个摄像头进行相对位置的固定,我是按平行来进行固定的(若是为了追求两个双目图像更高的生命度,也能够将其按必定钝角固定,这样作又限制了场景深度的扩展,根据实际需求选择)算法

e7cd5a0ed3a135d590f59c0561982f65.png

因为摄像头目前是咱们手动进行定位的,咱们如今还不知道两张图像与世界坐标之间的耦合关系,因此下一步要进行的是标定,用来肯定分别获取两个摄像头的内部参数,而且根据两个摄像头在同一个世界坐标下的标定参数来获取立体参数。注:不要使用OpenCV自带的自动calbration,其对棋盘的识别率极低,使用Matlab的Camera Calibration Toolbox更为有效,具体细节请看:摄像机标定和立体标定ide

同时从两个摄像头获取图片spa

import cv2

import time

AUTO = True # 自动拍照,或手动按s键拍照

INTERVAL = 2 # 自动拍照间隔

cv2.namedWindow("left")

cv2.namedWindow("right")

cv2.moveWindow("left", 0, 0)

cv2.moveWindow("right", 400, 0)

left_camera = cv2.VideoCapture(0)

right_camera = cv2.VideoCapture(1)

counter = 0

utc = time.time()

pattern = (12, 8) # 棋盘格尺寸

folder = "./snapshot/" # 拍照文件目录

def shot(pos, frame):

global counter

path = folder + pos + "_" + str(counter) + ".jpg"

cv2.imwrite(path, frame)

print("snapshot saved into: " + path)

while True:

ret, left_frame = left_camera.read()

ret, right_frame = right_camera.read()

cv2.imshow("left", left_frame)

实现效果:http://v.youku.com/v_show/id_XMTU2Mzk0NjU3Ng==.html 如何在你的电脑上运行这个程序? 1,它需要cvblobslib这一个opencv的扩展库来实现检测物体与给物体画框的功能,具体安装信息请见: http://dsynflo.blogspot.com/2010/02/cvblobskib-with-opencv-installation.html,当你配置好cvblobslib之后,你可以用这一的程序进行测试:http://dl.dropbox.com/u/110310945/Blobs%20test.rar 2,视频中两个摄像头之间的距离是6cm,你可以根据你摄像头的型号,来选择合适的距离来达到最好的效果。 3,在进行测距之前,首先需要对摄像头进行标定,那么如何标定呢? 在stdafx.h中把"#define CALIBRATION 0"改成 “#define CALIBRATION 1”表示进行标定,标定之后,你就可以在工程目录下的"CalibFile" 文件夹中得到标定信息的文件。如果标定效果还不错,你就可以吧"#define CALIBRATION " 改成0,以后就不需要再标定,直接使用上一次的标定信息。你还需要把"#define ANALYSIS_MODE 1"这行代码放到stdafx.h中。 4,视频中使用的是10*7的棋牌格,共摄录40帧来计算摄像头的各种参数,如果你像使用其他棋盘格,可以在 "StereoFunctions.cpp"文件中修改相应参数。 5,如果你无法打开摄像头,可以在 "StereoGrabber.cpp"文件中修改代码“cvCaptureFromCAM(index)”中index的值。 6,About computing distance: it interpolates the relationship between depth-value and real-distance to third degree polynomial. So i used excel file "interpolation" for interpolation to find k1 to k4, you should find your own value of these parameters. 7,你可以通过调整控制窗口中各个参数的滑块,从而来得到更好的视差图。 8,在目录下的”distance“文件夹中,有计算距离信息的matlab代码。 9,如果你想了解基本的理论,可以看一下这个文档:http://scholar.lib.vt.edu/theses/available/etd-12232009-222118/unrestricted/Short_NJ_T_2009.pdf 视频中环境:vs2008,opencv2.1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值