最小二乘法多元线性回归_数学基础2:线性回归&最小二乘法

该博客详细阐述了最小二乘法的矩阵表达形式,从概率视角解释了加入高斯噪声的最小二乘估计与线性回归的关系。还探讨了线性回归的正则化,尤其是lasso和岭回归,指出正则化如何防止过拟合。最后,通过贝叶斯视角进一步解释了岭回归的理论依据。
摘要由CSDN通过智能技术生成

01b9628d6d747853e4171ecf9d53179c.png

主要介绍了最小二乘法的相关内容,包括最小二乘法的矩阵表达和推导,从概率视角来观察最小二乘法(加入高斯噪声的最小二乘估计),正则化(包括一阶正则:lasso,二阶正则ridge也就是岭回归等内容),最后介绍了从贝叶斯视角来看岭回归的思路和结论。

最小二乘法的矩阵表达形式

0f112e6d47cff7c43deab3fb18bfd899.png

概率视角看线性回归

8ac54aad3ef740076b386f3af2fe152e.png

加入高斯噪声进行极大似然估计,可以发现,当噪声服从高斯分布的时候,最小二乘法与线性回归的极大似然估计的结论是等价的。

线性回归的正则化

在线性回归中引入正则化是因为数据量不够大容易造成过拟合的现象。正则化可以理解为对参数空间添加惩罚项。

261ffaa35eb4591c8699e7a2cc7917aa.png

cbce0392e28e52927cafc2321061d3f2.png

可以发现在添加惩罚项之后的参数估计值中绿线部分变为一定可逆的,从而也保证了参数的估计一定有解。

从贝叶斯视角看岭回归

bcfc56a16b50945c6aef2aca4abefe0e.png

可以发现从贝叶斯角度来看等到的参数估计的结论与加入正则化项(ridge)的最小二乘法得到的结论是一样的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值