
图片来自网络,侵删

假设一:回归模型设定是正确的
假设二:矩阵
假设三:随机干扰项条件零均值
假设四:随机干扰项同方差且序列不相关
假设五:随机干扰项具有正态分布
再看看我们在一元线性回归时,估计模型中的参数的套路:
夔小攀:计量经济学:一元线性回归最小二乘估计(OLS)及其检验zhuanlan.zhihu.com
之前我们谈到,多元线性回归是可以用矩阵形式表示的,所以我们在这里也会尝试使用矩阵的形式去进行OLS估计。
普通最小二乘的原理,就是让实际值
那么对于
对于所有的
如何求得
这对于手工计算可不容易,最后的结果我们可以用一个技巧来代替:
令
正规方程组可以变换为:
只看第一行:
可以表示为:
那么,对于所有行,也就相当于:
而最左边的矩阵,其实相当于
那么整个正规方程组,我们用矩阵表示为
对于
再对
矩阵求导的性质
注意:
那么,
则有:
化简得:
与一元线性回归相同的,对于满足基本假设的OLS估计统计量,具有线性性、无偏性、有效性、一致性、渐进无偏性、渐进有效性。我们可以尝试证明前三个性质
线性性极为明显:
将
利用零均值假设,
需要先求出估计量的方差:
这里运用了同方差与序列不相关的假设,即
随后证明这个方差是所有线性无偏估计量中最小的
不妨假设这个世界上的其他「线性无偏」估计量为
那么,当且仅当
再考察
其中,我们通过之前的论证
那么,移项便知:
继续观察协方差矩阵:
虽然看上去很复杂,但是结果却很简单。根据我们的假设,
所以最小二乘估计量具有有效性。一元线性回归中的证明也是如此。
本文介绍多元线性回归中的最小二乘估计方法,包括正规方程组的推导过程及统计量的性质,如线性性、无偏性和有效性等。
1446

被折叠的 条评论
为什么被折叠?



