最小二乘估计_计量经济学:多元线性回归的最小二乘估计

本文介绍多元线性回归中的最小二乘估计方法,包括正规方程组的推导过程及统计量的性质,如线性性、无偏性和有效性等。
部署运行你感兴趣的模型镜像

8fca51bdd947fcc069adf87abadde6c7.png
图片来自网络,侵删

回顾上一篇文章:多元线性回归的基本假设
夔小攀:计量经济学:多元线性回归的总体与样本以及基本假设​zhuanlan.zhihu.com
9fb7f104783064be25c9cdc900b72052.png

假设一:回归模型设定是正确的

假设二:矩阵

是满秩的

假设三:随机干扰项条件零均值

假设四:随机干扰项同方差且序列不相关

假设五:随机干扰项具有正态分布

再看看我们在一元线性回归时,估计模型中的参数的套路:

夔小攀:计量经济学:一元线性回归最小二乘估计(OLS)及其检验​zhuanlan.zhihu.com
d0f14cd92d5504b2c848a9a1a5ee0421.png

开始这一篇文章:待估参数推导过程

之前我们谈到,多元线性回归是可以用矩阵形式表示的,所以我们在这里也会尝试使用矩阵的形式去进行OLS估计。

正规方程组的推导

普通最小二乘的原理,就是让实际值

与估计值
之间差的平方和最小。在多元线性回归中,样本回归函数为:

那么对于

这个样本,其实际值与估计值的差:

对于所有的

(样本量为
,解释变量个数为
),
的平方和为:

如何求得

的最小值呢?对未知量
求偏导,并令其等于零可能是一个合理的思路(到后面,我们可以尝试证明,求得的极值就是最值)。

这对于手工计算可不容易,最后的结果我们可以用一个技巧来代替:

表示第
个解释变量
对其他解释变量进行OLS回归后的残差,那么
就可以表示为:

矩阵形式下的正规方程组

正规方程组可以变换为:

只看第一行:

可以表示为:

那么,对于所有行,也就相当于:

而最左边的矩阵,其实相当于

那么整个正规方程组,我们用矩阵表示为

,由此可得:

矩阵推导全程

对于

,运用矩阵的乘法性质(注意:
),可以推出:

再对

求偏导:
矩阵求导的性质

注意:

是一个列向量,对于列向量
求导,有以下性质

那么,

;
;
;

则有:

化简得:

,由此可得:

统计量的性质

与一元线性回归相同的,对于满足基本假设的OLS估计统计量,具有线性性、无偏性、有效性、一致性、渐进无偏性、渐进有效性。我们可以尝试证明前三个性质

线性性

线性性极为明显:

,其中
只与固定的
有关

无偏性

代入其中,可以得到:

利用零均值假设,

,无偏性也得到了证明。同时
,这个公式将在有效性的证明中发挥作用。

有效性

需要先求出估计量的方差:

这里运用了同方差与序列不相关的假设,即

随后证明这个方差是所有线性无偏估计量中最小的

不妨假设这个世界上的其他「线性无偏」估计量为

,当然对于
可以将其表示为
是一个固定矩阵,
就是最小二乘估计中的线性系数
。根据无偏性的条件:

那么,当且仅当

时,才能使得

;那么
;而
,那么

再考察

的方差-协方差矩阵:

其中,我们通过之前的论证

,可以发现:

那么,移项便知:

继续观察协方差矩阵:

虽然看上去很复杂,但是结果却很简单。根据我们的假设,

是一个主对角线元素非负的对称矩阵,可以得知最终的结果:

所以最小二乘估计量具有有效性。一元线性回归中的证明也是如此。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值