Halcon中阈值二值化的算子众多,通常用得最多的有threshold、binary_threshold、dyn_threshold等。
threshold是最简单的阈值分割算子,理解最为简单;binary_threshold是自动阈值算子,它可以自动选出暗(dark)的区域,或者自动选出亮(light)的区域,理解起来也没有难度。
动态阈值算子dyn_threshold理解起来稍微复杂一点,使用dyn_threshold算子的步骤基本是这样的:
① 将原图进行滤波平滑处理。
② 用原图和平滑后的图逐个像素做比较,它可以根据参数分割出原图比平滑后的图灰度高(或者低)若干个灰度值的区域。
举例如下:
处理程序是这样的:
1 read_image (Image, 'C:/Users/happy xia/Desktop/dynPic.png')
2 mean_image (Image, ImageMean, 9, 9)
3 dyn_threshold (Image, ImageMean, RegionDynThresh, 10, 'dark')
程序分析:本例中,将图片模糊后,点阵字的黑色扩散了,随之就是字的黑色不如原图那么黑了,那么通过给定的限值“10”和“dark”,就可以将原图比模糊后的图暗10个灰阶以上的区域(即黑色文字部分)选出来了。
以上所说的三个算子并不是本文的重点,但却是理解下面的两个阈值分割算子的准备知识。
1、dual_threshold
先看程序和效果图再分析。
1 read_image (Image, 'C:/Users/happy xia/Desktop/2.png')
2 dual_threshold (Image, RegionCrossings, 174, 200, 180)
dual_threshold(Image : RegionCrossings : MinSize, MinGray, Threshold : )
该算子签名中:Threshold 表示用于分割的阈值数值,MinSize表示分割出来的区域的最小面积(即数像素的数目个数),MinGray表示分割出来的区域对应的原图中图像像素的最高灰度不能低于MinGray设定值。
注意图中蓝色矩形小色块的面积是175个像素,因此当MinSize = 174时,它可以被分割出来。
OK,我知道这么说比较拗口。下面我边改变参数边观察效果图,并做简要分析:
1 read_image (Image, 'C:/Users/happy xia/Desktop/2.png')
2 dual_threshold (Image, RegionCrossings, 176, 200, 180)
效果图如下:
由于最小面积设置为176,那么面积为175像素的矩形小色块就没有被分割出来。
再来改变MinGray参数:
1 read_image (Image, 'C:/Users/happy xia/Desktop/2.png')
2 dual_threshold (Image, RegionCrossings, 176, 216, 180)
此时观察到,最右边那个齿轮本来分割出来的区域没有了!
通过取色器观察可知,这块区域最亮的灰度大概比211高一点点。
我们把这个值略微调低再看看:
1 read_image (Image, 'C:/Users/happy xia/Desktop/2.png')
2 dual_threshold (Image, RegionCrossings, 176, 210, 180)
最右边那个齿轮右下角那一块又被分割出来了!
相信通过这样参数的反复调节,大家已经彻底明白了dual_threshold算子的意义和用法。
我们看这个算子的名称——dual是“双”的意思,也就是双阈值。如果我们让参数列表中的MinGray = Threshold,那就是单阈值了。
1 read_image (Image, 'C:/Users/happy xia/Desktop/2.png')
2 dual_threshold (Image, RegionCrossings, 176, 180, 180)
这个算子是很高效的。如果要完成上面这个程序这样的功能,用threshold算子的话,代码要这样写:
1 read_image (Image, 'C:/Users/happy xia/Desktop/2.png')
2 threshold (Image, Region, 180, 255)
3 connection (Region, ConnectedRegions)
4 select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 176, 9999999)
也就是说dual_threshold一条算子顶这三条算子。
dual_threshold算子的缺陷:它只能分割出灰度值高的亮区域,不能分割出灰度值低的暗区域。
下面介绍var_threshold算子。
2、var_threshold
先看var_threshold算子的签名:
var_threshold(Image : Region : MaskWidth, MaskHeight, StdDevScale, AbsThreshold, LightDark : )
MaskWidth、 MaskHeight是用于滤波平滑的掩膜单元;StdDevScale是标准差乘数因子(简称标准差因子);AbsThreshold是设定的绝对阈值;LightDark有4个值可选,'light'、'dark'、'equal'、'not_equal'。
需要强调的是var_threshold算子和dyn_threshold算子极为类似。不同的是var_threshold集成度更高,并且加入了“标准差×标准差因子”这一变量。
举例:
1 read_image (Image, 'C:/1.png')
2 var_threshold (Image, Region, 4, 4, 0.2, 12, 'dark')
在该程序中,先用4×4的掩膜在图像上逐像素游走,用原图中的当前像素和对应掩膜中16个像素的灰度均值对比,找出暗(dark)的区域。当原图像素灰度比对应的掩膜灰度均值低(0.2,12)个灰阶时,该区域被分割出来。本程序中StdDevScale = 0.2, AbsThreshold = 12,问题的关键就是理解如何通过StdDevScale和AbsThreshold来确定用于分割的阈值。
var_threshold的帮助文档中是这么写的:
说明:
1、d(x,y)指的是遍历每个像素时,掩膜覆盖的那些像素块(本例中是4×4 = 16个像素)灰度的标准差;StdDevScale 是标准差因子。
2、当标准差因子StdDevScale ≥ 0 时,v(x,y) 取(StdDevScale ×标准差)和AbsThreshold 中较大的那个。
3、当标准差因子StdDevScale < 0 时,v(x,y) 取(StdDevScale ×标准差)和AbsThreshold 中较小的那个。实测发现,这里的比较大小是带符号比较,由于标准差是非负数,当StdDevScale < 0 时,(StdDevScale ×标准差)≤ 0恒成立。所以此时的取值就是(StdDevScale ×标准差)。
文档是这么说的:
If StdDevScale*dev(x,y) is below AbsThreshold for positive values of StdDevScale or above for negative values StdDevScale, AbsThreshold is taken instead.
大致意思是:
当StdDevScale为正时,如果StdDevScale*dev(x,y) 低于 AbsThreshold,则采用AbsThreshold。
当StdDevScale为负时,如果StdDevScale*dev(x,y) 高于 AbsThreshold,则采用AbsThreshold。
我找了一块黑白过渡处4×4的像素块,求得它的灰度标准差为51.16(或49.53):
帮助文档中StdDevScale 的推荐值范围是-1~1,一般通过上面的例子可知,一般的明显的黑白过度处的标准差在50左右,乘以StdDevScale即-50 ~ 50 ,50的灰度差异,对于分割来说一般是够了的。
文档还说:推荐的值是0.2,如果参数StdDevScale太大,可能分割不出任何东西;如果参数StdDevScale太小(例如-2),可能会把整个图像区域全部输出,也就说达不到有效分割的目的。(……with 0.2 as a suggested value. If the parameter is too high or too low, an empty or full region may be returned.)
最后再看看是怎么分割像素的:
其中g(x,y)指的是原始图像当前像素的灰度值;m(x,y)指的是遍历像素时,掩膜覆盖的像素的平均灰度值(mean)。
以LightDark = ‘dark’为例,当满足m(x,y) - g(x,y) ≥ v(x,y)时(即原始图像对应像素灰度比掩膜像素灰度均值低v(x,y)个灰度值以上),相应的灰度值低的暗像素被分割出来。
最后看几个例子体会一下:(对比之前的例子var_threshold (Image, Region, 4, 4, 0.2, 12, 'dark')的效果)
① 将AbsThreshold 由12改成30,此时分割出的区域变小。
1 read_image (Image, 'C:/1.png')
2 var_threshold (Image, Region, 4, 4, 0.2, 30, 'dark')
② AbsThreshold 保持12不变,将StdDevScale由0.2改成0.7,此时分割出的区域变小。
③ 将参数改为var_threshold (Image, Region, 4, 4, -0.01, 12, 'dark'),此时分割出的区域大大增加,由前面的分析可知,此时参数AbsThreshold = 12无效,事实上,此时将AbsThreshold 改为1、50甚至200都对最终结果没有任何影响。
通过本人的分析,我认为StdDevScale取负值意义不大,因为它会分割出大量的不需要的区域,故一般推荐使用该算子时,StdDevScale取正值。
需要强调的是:在黑白过渡处,一般掩膜覆盖的像素的标准差较大,而在其他平缓的地方,标准差较小;因此最终采用的分割阈值随着掩膜在不断遍历像素的过程中,在(StdDevScale×标准差)和AbsThreshold 之间不断切换。
var_threshold和dyn_threshold的区别和联系:
dyn_threshold是将原图和滤波平滑后的图对比,var_threshold是将原图和对应像素掩膜覆盖的像素的平均灰度值对比。
在算子var_threshold中,如果参数StdDevScale = 0,那么就可以用动态阈值的方式非常近似地模拟。以下两种算法的效果极为类似:
1 read_image (Image, 'C:/1.png')
2 var_threshold (Image, Region, 4, 4, 0, 12, 'dark')
1 read_image (Image, 'C:/1.png')
2 mean_image (Image, ImageMean, 4, 4)
3 dyn_threshold (Image, ImageMean, RegionDynThresh, 12, 'dark')
两种方法的效果图:
那么当StdDevScale > 0 时,var_threshold对比dyn_threshold还存在什么优点呢?我认为是在黑白过渡处能减少分割出不需要的区域的概率。(因为黑白过渡处标准差大,当然前提是StdDevScale 不能设置得太小)
使用c++和opencv 实现 var_threshold
enum ThresholdType
{
THRESHOLD_LIGHT, //明
THRESHOLD_DARK, //暗
THRESHOLD_EQUAL, //等于
THRESHOLD_NOT_EQUAL //不等于
};
//功能:通过局部均值和标准差分析对图像进行阈值处理
//参数:
// src:输入图像
// mask:掩膜
// dst:输出图像
// maskW:掩膜宽度,用于均值和偏差计算(maskW >= 1)
// maskH:掩膜高度,用于均值和偏差计算(maskH >= 1)
// StdDevScale:灰度值标准差的因数
// AbsThreshold:与平均值的最小灰度值差异
// type:
// g(x,y):是输入Image中位置(x,y)处的灰度值
// m(x,y):对应的平均灰度值
// d(x,y):围绕该像素的遮罩中的相应标准偏差
// THRESHOLD_LIGHT(明): g(x,y) ≥ m(x,y) + d(x,y)
// THRESHOLD_DARK(暗): g(x,y) ≤ m(x,y) - d(x,y)
// THRESHOLD_EQUAL(等于): m(x,y) - d(x,y) ≤ g(x,y) ≤ m(x,y) + d(x,y)
// THRESHOLD_NOT_EQUAL(不等于): m(x,y) - d(x,y) > g(x,y) || g(x,y) > m(x,y) + d(x,y)
//返回值:无
void var_threshold(Mat src, Mat mask, Mat &dst,
int maskW, int maskH, float StdDevScale,
float AbsThreshold, ThresholdType type)
{
dst = Mat(src.size(), CV_8UC1, Scalar(0));
int width = maskW;
int height = maskH;
if (maskW % 2 == 0)
width++;
if (maskH % 2 == 0)
height++;
int rows = src.rows;
int cols = src.cols;
int minW = width / 2;
int minH = height / 2;
for (int row = 0; row < rows; row++)
{
for (int col = 0; col < cols; col++)
{
if (mask.at<uchar>(row, col) > 0)
{
vector<float> grays;
float sum = 0;
int i, j;
if (row - minH < 0)
i = 0;
else
i = row - minH;
for (; i <= row + minH && i < rows; i++)
{
if (col - minW < 0)
j = 0;
else
j = col - minW;
for (; j <= col + minW && j < cols; j++)
{
if (mask.at<uchar>(i, j) > 0)
{
int gray = src.at<uchar>(i, j);
grays.push_back(gray);
sum += gray;
}
}
}
float average = sum / grays.size();
float stdValue = StdDeviation(grays, average);
float limit = 0;
if (StdDevScale >= 0)
{
limit = std::max(StdDevScale * stdValue, AbsThreshold);
}
else if (StdDevScale < 0)
{
limit = std::min(StdDevScale * stdValue, AbsThreshold);
}
int g_src = src.at<uchar>(row, col);
if (type == THRESHOLD_LIGHT)
{
if (g_src >= average + limit)
dst.at<uchar>(row, col) = 255;
}
else if (type == THRESHOLD_DARK)
{
if (g_src <= average - limit)
dst.at<uchar>(row, col) = 255;
}
else if (type == THRESHOLD_EQUAL)
{
if (g_src >= average - limit && g_src <= average + limit)
dst.at<uchar>(row, col) = 255;
}
else if (type == THRESHOLD_NOT_EQUAL)
{
if (g_src < average - limit || g_src > average + limit)
dst.at<uchar>(row, col) = 255;
}
}
}
}
}
//功能:求标准差
//参数:
// numbers:求标准差的数组
// average:该数组的平均值
//返回值:求得的标准差
float StdDeviation(vector<float> numbers, float average)
{
int count = numbers.size();
float sum = 0;
for (int i = 0; i < count; i++)
sum += (numbers[i] - average) * (numbers[i] - average);
if (0 == count)
{
return 0;
}
return sqrt(sum / count);
}
使用c++和opencv 实现 dyn_threshold算子
void CImagePreprocessing::dynamic_threshold_referHalcon(cv::Mat &frame_gray, int ksize, int offset) //仿Halcon
{
cv::Mat srcMean;
cv::Mat binary1;
cv::Mat binary2;
//均值滤波
blur(frame_gray, srcMean, cv::Size(9, 9));
//动态阈值
binary1 = cv::Mat::zeros(frame_gray.size(), CV_8UC1);
_HalconDynThreshold(frame_gray, srcMean, binary1, offset, Equal);
}
void CImagePreprocessing::_HalconDynThreshold(cv::Mat &src, cv::Mat &srcMean, cv::Mat &result, int offset, int LightDark)
{
//使用Opencv实现Halcon中的动态阈值
//src是原图,灰度图
//srcMean是平滑滤波之后的图
//最好不要把Offset这个变量设置为0,因为这样会导致最后找到太多很小的regions,而这基本上都是噪声。
//所以这个值最好是在5-40之间,值选择的越大,提取出来的regions就会越小。
int r = src.rows; //高
int c = src.cols; //宽
int Value = 0;
for (int i = 0; i < r; i++)
{
uchar *datasrc = src.ptr<uchar>(i); //指针访问图像像素
uchar *datasrcMean = srcMean.ptr<uchar>(i);
uchar *dataresult = result.ptr<uchar>(i);
for (int j = 0; j < c; j++)
{
switch (LightDark)
{
case Light:
Value = datasrc[j] - datasrcMean[j];
if (Value >= offset)
{
dataresult[j] = 255;
}
break;
case Dark:
Value = datasrcMean[j] - datasrc[j];
if (Value >= offset)
{
dataresult[j] = 255;
}
break;
case Equal:
Value = datasrc[j] - datasrcMean[j];
if (Value >= -offset && Value <= offset)
{
dataresult[j] = 255;
}
break;
case Not_equal:
Value = datasrc[j] - datasrcMean[j];
if (Value < -offset || Value > offset)
{
dataresult[j] = 255;
}
break;
default:
break;
}
}
}
}
此文为转载,文章在这里