每种物品只有一件
对于二维降一维,外层循环中的每一个i其实是不需要记录的
所以在第i次循环刚开始时,所有的dp[]都未更新,此时下面的dp[x]记录的是前i-1个物品在容量是x时的最大值(x>=0&&x<=V)
dp[0] | dp[1] | dp[2] | dp[…] | dp[V] |
---|
相当于dp[i][x]=dp[i-1][x]和dp[i-1][x-w[i]]+c[i]
- 下面看01背包的1维数组存放的代码
for(int i=1;i<=n;i++)
{
for(int x=V;x>=w[i];x--)
{
dp[x]=max(dp[x],dp[x-w[i]]+c[i]);
}
}
所以x递减遍历的原因:我们要保证在i时刻求解dp[x]的时候,max比较的dp[x]项与dp[x-w[i]]+c[i]项必须是i-1时刻的值,
dp[0] | dp[1] | dp[2] | dp[…] | dp[x-w[i]] | dp[…] | dp[x] | dp[…] | dp[V] |
---|
假如我们正序遍历,从左往右第一次更新得到的dp[x-w[i]]+c[i],此时它的含义是前i个物品在容量是x-w[i]时的最大值,然后再往后,更新到dp[x]时显然max中的dp[x-w[i]]+c[i]项中的i-1时刻的值已经被覆盖为i时刻的值了,所以不能正序遍历,需要逆序遍历,防止被更新
每种物品有无穷件
首先区别与01背包,因为物品有无穷件所以放第i件时转移到的是dp[i][x-w[i]]+c[i],在i-1时刻其存储的意义也是dp[x]记录的是前i-1个物品在容量是x时的最大值
- 下面看完全背包的1维数组存放的代码
for(int i=1;i<=n;i++)
{
for(int x=w[i];x<=V;x++)
{
dp[x]=max(dp[x],dp[x-w[i]]+c[i]);
}
}
所以x递增遍历的原因:因为放放第i件时转移到的是dp[i][x-w[i]]+c[i],对应与dp[x-w[i]]+c[i],它表示的是前i个物品在容量是x-w[i]时的最大值*,所以需要正序遍历(上面讲过啦~)
( * ^ ▽ ^ * )啃了一天,终于啃明白这俩降维了