01背包 与 完全背包 中的降维

  1. 01背包

每种物品只有一件

对于二维降一维,外层循环中的每一个i其实是不需要记录的
所以在第i次循环刚开始时,所有的dp[]都未更新,此时下面的dp[x]记录的是前i-1个物品在容量是x时的最大值(x>=0&&x<=V)

dp[0]dp[1]dp[2]dp[…]dp[V]

相当于dp[i][x]=dp[i-1][x]和dp[i-1][x-w[i]]+c[i]

  • 下面看01背包的1维数组存放的代码
for(int i=1;i<=n;i++)
{
   for(int x=V;x>=w[i];x--)
   {
     dp[x]=max(dp[x],dp[x-w[i]]+c[i]);
   }
}

所以x递减遍历的原因:我们要保证在i时刻求解dp[x]的时候,max比较的dp[x]项dp[x-w[i]]+c[i]项必须是i-1时刻的值

dp[0]dp[1]dp[2]dp[…]dp[x-w[i]]dp[…]dp[x]dp[…]dp[V]

假如我们正序遍历,从左往右第一次更新得到的dp[x-w[i]]+c[i],此时它的含义是前i个物品在容量是x-w[i]时的最大值,然后再往后,更新到dp[x]时显然max中的dp[x-w[i]]+c[i]项中的i-1时刻的值已经被覆盖为i时刻的值了,所以不能正序遍历,需要逆序遍历,防止被更新

  1. 完全背包

每种物品有无穷件

首先区别与01背包,因为物品有无穷件所以放第i件时转移到的是dp[i][x-w[i]]+c[i],在i-1时刻其存储的意义也是dp[x]记录的是前i-1个物品在容量是x时的最大值

  • 下面看完全背包的1维数组存放的代码
for(int i=1;i<=n;i++{
    for(int x=w[i];x<=V;x++)
    {
       dp[x]=max(dp[x],dp[x-w[i]]+c[i]);
    }
}

所以x递增遍历的原因:因为放放第i件时转移到的是dp[i][x-w[i]]+c[i],对应与dp[x-w[i]]+c[i],它表示的是前i个物品在容量是x-w[i]时的最大值*,所以需要正序遍历(上面讲过啦~)

( * ^ ▽ ^ * )啃了一天,终于啃明白这俩降维了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值