动态图的表(特)征学习
学习文献:Representation Learning over Dynamic Graphs
刚开始学习,很多专业词与概念还有很多不理解的地方,文章中如有理解错误或者理解不通的地方还请各位指正。
大数据一些专用名词对照
摘要:通过DyRep算法将动态图形上的演化信息有效地进行编码,将其表示为低纬形式。分析动态图的过程中,动图中点之间的通信和关联很重要。论文采用时间尺度相关的多变量点过程模型来捕捉这些动态。论文中设计了一个有效的无监督学习过程(unsupervised learning procedure),并证明该方法在动态链路预测和事件时间预测问题上显着优于两个真实数据集上的代表性基线(representative baselines)。
需要理解的三个问题:
传统的机器学习方法依赖于用户定义的启发式模型来提取关于图的结构信息的特征编码 (例如,度统计或核函数)。然而,近年来,使用基于深度学习和非线性降维的技术,自动学习将图形结构编码为低维Embedding的方法激增。
-
[Dyrep和其他框架的相似点(基本原理)]
-
[Dyrep和其他框架的不同点(创新点)]
答:1.采用时间尺度相关的多变量点过程模型来捕捉这些动态。2.采用了无监督学习,利用未被标记过的数据被当做特征用来学习。3.聚合节点邻居是还采用了注意力机制。4.为了模拟解调更新的现象,提出了DyRep,它考虑了通信和关联过程的联合效应,用于更新节点表示,同时模拟演化表示对这两个过程的驱动效果。
DyRep的结构
DyRep:An inductive deep representation learning framework that learns a set of functions to eciently produce low-dimensional node embeddings that evolves over time.
一种归纳深度表示学习框架,它学习一组函数以有效地生成随时间演变的低维节点Embedding。
DyRep框架的说明性视图如图所示。
图1 DyRep框架
其中,tp;k=0 < (t1; t2; t3; t4; t5)k=1 < tq;k&#