Resnet50网络的应用—抑郁症诊断

写在前边

本人研究生阶段的研究内容为抑郁症诊断,最近一直在想搭建件简单有效的网络,提升自己编码能力的同时,推动科研的进展。本文是总结了最近两周学习的论文中,应用到Resnet_50网络的,在此进行整理和总结。欢迎相同方向的同学交流学习。

正文

相比于之前的思路,本部分选择的是三个论文,都是借助Resnet_50网络作为核心网路的,我觉得这个方向是可以进行相应的学习和研究的。


论文名称:DEPRESSION DETECTION BASED ON DEEP DISTRIBUTION LEARNING

数据集:AVEC2013、AVEC2014

创新点:本文的出发角度是很好的,解决现在部分模型中,损失函数是基于标记的面部图像,没有明确地探讨所有面部图像与抑郁水平之间的序数关系。通过对整个个体图片的完全整理,实现对所有图对相应的抑郁分数的对应,从而降低误差。

整体结构:

整体模型图如下图:

本文将抑郁症诊断问题作为分类问题处理的,整体以一个样本的所有图片作为一个样本,对应一个label。

本文提出  expectation loss 来描述抑郁分数的分布,首先针对输入的 i 个图片Xi,Yi为对应所以的label,Zi表示系统的输出抑郁症分数,计算获取概率,

为了求得分布,先计算下期望值,其中j表示label:

【项目介绍】 基于ResNet网络+AVEC2014数据集实现抑郁症诊断python源码+数据集+运行说明.zip ResNet网络应用抑郁症诊断 使用数据集:**AVEC2014** 数据集下载地址 <a href="https://pan.baidu.com/s/1Dt6BhVnRoTaxJ4edk0w7aQ?pwd=AVEC">AVEC2014</a> 提取码:AVEC 预处理: ​ 1.**采样**,AVEC2013每个视频取100帧,保留原始label ​ 2.**人脸对齐裁剪**,使用**MTCNN**工具 ### 文件介绍 ``` preprocess.py 主要用于预处理视频信息,从中提取帧,并在视频帧中提取人脸 函数:generate_label_file() 将运来的label合并为一个csv文件 函数:get_img() 抽取视频帧,每个视频按间隔抽取100-105帧 函数:get_face() 使用MTCNN提取人脸,并分割图片 model.py 模型的网络结构 ``` ``` load_data.py 获取图片存放路径以及将标签与之对应 writer.py 创建Tensorboard记录器,保存训练过程损失 dataset.py 继承torch.utils.Dataset,负责将数据转化为torch.utils.data.DataLoader可以处理的迭代器 train.py 模型训练 validate.py 验证模型 test.py 测试模型的性能,并记录预测分数,保存在testInfo.csv,记录了每张图片的路径,label,预测分数 main.py 模型训练入口文件 ``` ``` img 提取的视频帧文件 log Tensorboard日志文件 model_dict 训练好的模型参数文件 processed 存放预处理完成之后的人脸图片,label文件 AVEC2014 数据集存放位置 ``` ``` 查看训练日志方法: 安装tensorboard库之后,输入命令tensorboard --lofdir log_dir_path,打开命令执行后出现的网址即可 log_dir_path是存放Tensorboard日志文件的文件夹路径 ``` ``` 运行顺序:preprocess.py--->main.py--->test.py ``` 【备注】 1.项目代码均经过功能验证,确保稳定可靠运行。欢迎下载食用体验! 2.主要针对各个计算机相关专业,包括计算机科学、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师、企业员工。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈!
1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 深度学习基于AVEC2014数据集和Resnet网络实现的抑郁症诊断系统python源码+运行说明+数据集.zip 项目介绍 ResNet网络应用抑郁症诊断 使用数据集:**AVEC2014** 数据集下载地址 <a href="https://pan.baidu.com/s/1Dt6BhVnRoTaxJ4edk0w7aQ?pwd=AVEC">AVEC2014</a> 提取码:AVEC 预处理: ​ 1.**采样**,AVEC2013每个视频取100帧,保留原始label ​ 2.**人脸对齐裁剪**,使用**MTCNN**工具 ### 文件介绍 ``` preprocess.py 主要用于预处理视频信息,从中提取帧,并在视频帧中提取人脸 函数:generate_label_file() 将运来的label合并为一个csv文件 函数:get_img() 抽取视频帧,每个视频按间隔抽取100-105帧 函数:get_face() 使用MTCNN提取人脸,并分割图片 model.py 模型的网络结构 ``` ``` load_data.py 获取图片存放路径以及将标签与之对应 writer.py 创建Tensorboard记录器,保存训练过程损失 dataset.py 继承torch.utils.Dataset,负责将数据转化为torch.utils.data.DataLoader可以处理的迭代器 train.py 模型训练 validate.py 验证模型 test.py 测试模型的性能,并记录预测分数,保存在testInfo.csv,记录了每张图片的路径,label,预测分数 main.py 模型训练入口文件 ``` ``` img 提取的视频帧文件 log Tensorboard日志文件 model_dict 训练好的模型参数文件 processed 存放预处理完成之后的人脸图片,label文件 AVEC2014 数据集存放位置 ``` ``` 查看训练日志方法: 安装tensorboard库之后,输入命令tensorboard --lofdir log_dir_path,打开命令执行后出现的网址即可 log_dir_path是存放Tensorboard日志文件的文件夹路径 ``` ``` 运行顺序:preprocess.py--->main.py--->test.py ```
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值