线性回归|机器学习推导系列(三)

一、概述

假设有以下数据:

D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } x i ∈ R p , y i ∈ R , i = 1 , 2 , ⋯   , N X = ( x 1 , x 1 , ⋯   , x N ) T = ( x 1 T x 2 T ⋮ x N T ) = ( x 11 x 12 ⋯ x 1 p x 21 x 22 ⋯ x 2 p ⋮ ⋮ ⋱ ⋮ x N 1 x N 2 ⋯ x N p ) N × p Y = ( y 1 y 2 ⋮ y N ) N × 1 D=\left \{(x_{1},y_{1}),(x_{2},y_{2}),\cdots ,(x_{N},y_{N})\right \}\\ x_{i}\in \mathbb{R}^{p},y_{i}\in \mathbb{R},i=1,2,\cdots ,N\\ X=(x_{1},x_{1},\cdots ,x_{N})^{T}=\begin{pmatrix} x_{1}^{T}\\ x_{2}^{T}\\ \vdots \\ x_{N}^{T} \end{pmatrix}=\begin{pmatrix} x_{11} & x_{12} & \cdots &x_{1p} \\ x_{21} & x_{22}& \cdots &x_{2p} \\ \vdots & \vdots & \ddots &\vdots \\ x_{N1}& x_{N2} & \cdots & x_{Np} \end{pmatrix}_{N \times p}\\ Y=\begin{pmatrix} y_{1}\\ y_{2}\\ \vdots \\ y_{N} \end{pmatrix}_{N \times 1} D={(x1,y1),(x2,y2),,(xN,yN)}xiRp,yiR,i=1,2,,NX=(x1,x1,,xN)T=x1Tx2TxNT=x11x21xN1x12x22xN2x1px2pxNpN×pY=y1y2yNN×1

这些数据符合下图关系(以一维数据为例),这里的函数 f ( w ) f(w) f(w)忽略了偏置 b b b

图像

二、最小二乘估计

L ( w ) = ∑ i = 1 N ∥ w T x i − y i ∥ 2 2 = ∑ i = 1 N ( w T x i − y i ) 2 = ( w T x 1 − y 1 w T x 2 − y 2 ⋯ w T x N − y N ) ⏟ ( w T x 1 w T x 2 ⋯ w T x N ) − ( y 1 y 2 ⋯ y N ) ⏟ w T ( x 1 x 2 ⋯ x N ) − ( y 1 y 2 ⋯ y N ) ⏟ w T X T − Y T ( w T x 1 − y 1 w T x 2 − y 2 ⋮ w T x N − y N ) = ( w T X T − Y T ) ( X w − Y ) = w T X T X w − w T X T Y − Y T X w + Y T Y = w T X T X w − 2 w T X T Y + Y T Y L(w)=\sum_{i=1}^{N}\left \| w^{T}x_{i}-y_{i}\right \|_{2}^{2}\\ =\sum_{i=1}^{N}(w^{T}x_{i}-y_{i})^{2}\\ =\underset{\underset{\underset{w^{T}X^{T}-Y^{T}}{\underbrace{w^{T}\begin{pmatrix} x_{1} & x_{2} & \cdots & x_{N} \end{pmatrix}-\begin{pmatrix} y_{1} & y_{2} & \cdots & y_{N} \end{pmatrix}}}}{\underbrace{\begin{pmatrix} w^{T}x_{1} & w^{T}x_{2} & \cdots & w^{T}x_{N} \end{pmatrix}-\begin{pmatrix} y_{1} & y_{2} & \cdots & y_{N} \end{pmatrix}}}}{\underbrace{\begin{pmatrix} w^{T}x_{1}-y_{1} & w^{T}x_{2}-y_{2} & \cdots & w^{T}x_{N}-y_{N} \end{pmatrix}}}\begin{pmatrix} w^{T}x_{1}-y_{1}\\ w^{T}x_{2}-y_{2}\\ \vdots \\ w^{T}x_{N}-y_{N} \end{pmatrix}\\ =(w^{T}X^{T}-Y^{T})(Xw-Y)\\ =w^{T}X^{T}Xw-w^{T}X^{T}Y-Y^{T}Xw+Y^{T}Y\\ =w^{T}X^{T}Xw-2w^{T}X^{T}Y+Y^{T}Y L(w)=i=1NwTxiyi22=i=1N(wTxiyi)2=wTXTYT wT(x1x2xN)(y1y2yN) (wTx1wTx2wTxN)(y1y2yN) (wTx1y1wTx2y2wTxNyN)wTx1y1wTx2y2wTxNyN=(wTXTYT)(XwY)=wTXTXwwTXTYYTXw+YTY=wTXTXw2wTXTY+YTY

接下来通过对 w w w求导就可以解得参数w:

w ^ = a r g m i n L ( w ) ∂ L ( w ) ∂ w = 2 X T X w − 2 X T Y = 0 得 出 w = ( X T X ) − 1 X T ⏟ X + , 伪 逆 Y \hat{w}=argminL(w)\\ \frac{\partial L(w)}{\partial w}=2X^{T}Xw-2X^{T}Y=0\\ 得出w=\underset{X^{+},伪逆}{\underbrace{(X^{T}X)^{-1}X^{T}}}Y w^=argminL(w)wL(w)=2XTXw2XTY=0w=X+ (XTX)1XTY

以上未考虑偏执 b b b,如果考虑的话则可以为 w w w添加一个维度,同时也为 x x x添加一个维度并使得添加的维度的值为 1 1 1,然后使用同样的求解方法即可。.

三、线性回归的几何解释

  1. 每个样本点的误差的总和

使用最小二乘法可以看做损失函数是每个样本的误差的总和,每个样本的误差即是 y i y_{i} yi w T x i w^{T}x_{i} wTxi的差,如下图所示:

误差的来源

  1. Y Y Y X X X的列空间上的投影

一组向量的生成子空间(span)是原始向量线性组合后所能抵达的点的集合。确定方程 A x = b Ax=b Ax=b是否有解,相当于确定向量 b b b是否在 A A A列向量的生成子空间中。这个特殊的生成子空间被称为 A A A的列空间(column space)或者 A A A的值域(range)。

我们的目的是为了求解 w w w使得 X w = Y Xw=Y Xw=Y,显然这个方程一般是无解的,即 Y Y Y一般不在 X X X的列空间中,因为样本点一般是散落在某条直线周围,所有的样本点准确地落在同一条直线上的情况少之又少。

对于 X w = f ( w ) Xw=f(w) Xw=f(w),为了使 f ( w ) f(w) f(w) Y Y Y最接近,则 f ( w ) f(w) f(w)就应该是 Y Y Y X X X的列空间中的投影,如下图所示,以 p = 2 p=2 p=2为例:

投影

Y − X w Y-Xw YXw就应该与每一个 ( x 1 i x 2 i ⋮ x N i ) \begin{pmatrix} x_{1i}\\ x_{2i}\\ \vdots \\ x_{Ni} \end{pmatrix} x1ix2ixNi都垂直,即 X T ( Y − X w ) = 0 p × 1 X^{T}(Y-Xw)=0_{p\times1} XT(YXw)=0p×1,则可以直接解得 w = ( X T X ) − 1 X T Y w=(X^{T}X)^{-1}X^{T}Y w=(XTX)1XTY

四、最小二乘法与极大似然估计

可以认为实际值与估计值之间的差是一个高斯噪声,即 y y y f ( w ) f(w) f(w)满足关系$y=f(w)+\varepsilon =w^{T}x+\varepsilon , 其 中 ,其中 \varepsilon 是 高 斯 噪 声 , 满 足 是高斯噪声,满足 \varepsilon\sim N(0,\sigma ^{2}) , 因 此 ,因此 y|x;w\sim N(w^{T}x,\sigma ^{2}) , 即 ,即 P(y|x;w)=\frac{1}{\sqrt{2\pi }\sigma }exp\left {-\frac{(y-w{T}x){2}}{2\sigma ^{2}}\right }$可以使用极大似然估计法来进行求解:

L ( w ) = l o g P ( Y ∣ X ; w ) = l o g ∏ i = 1 N P ( y i ∣ x i ; w ) = ∑ i = 1 N l o g P ( y i ∣ x i ; w ) = ∑ i = 1 N ( l o g 1 2 π + l o g   e x p { − ( y i − w T x i ) 2 2 σ 2 } ) = ∑ i = 1 N ( l o g 1 2 π − ( y i − w T x i ) 2 2 σ 2 ) w ^ = a r g m a x w L ( w ) = a r g m a x w ∑ i = 1 N ( l o g 1 2 π − ( y i − w T x i ) 2 2 σ 2 ) = a r g m a x w ∑ i = 1 N − ( y i − w T x i ) 2 2 σ 2 = a r g m i n w ∑ i = 1 N ( y i − w T x i ) 2 = a r g m i n w ∑ i = 1 N ∥ w T x i − y i ∥ 2 2 ( 最 小 二 乘 法 ) L(w)=logP(Y|X;w)\\ =log\prod_{i=1}^{N}P(y_{i}|x_{i};w)\\ =\sum_{i=1}^{N}logP(y_{i}|x_{i};w)\\ =\sum_{i=1}^{N}(log\frac{1}{\sqrt{2\pi }}+log\, exp\left \{-\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma ^{2}}\right \})\\ =\sum_{i=1}^{N}(log\frac{1}{\sqrt{2\pi }}-\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma ^{2}})\\ \hat{w}=\underset{w}{argmax}L(w)\\ =\underset{w}{argmax}\sum_{i=1}^{N}(log\frac{1}{\sqrt{2\pi }}-\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma ^{2}})\\=\underset{w}{argmax}\sum_{i=1}^{N}-\frac{(y_{i}-w^{T}x_{i})^{2}}{2\sigma ^{2}}\\ =\underset{w}{argmin}\sum_{i=1}^{N}(y_{i}-w^{T}x_{i})^{2}\\ =\underset{w}{argmin}\sum_{i=1}^{N}\left \| w^{T}x_{i}-y_{i}\right \|_{2}^{2}\\ (最小二乘法) L(w)=logP(YX;w)=logi=1NP(yixi;w)=i=1NlogP(yixi;w)=i=1N(log2π 1+logexp{2σ2(yiwTxi)2})=i=1N(log2π 12σ2(yiwTxi)2)w^=wargmaxL(w)=wargmaxi=1N(log2π 12σ2(yiwTxi)2)=wargmaxi=1N2σ2(yiwTxi)2=wargmini=1N(yiwTxi)2=wargmini=1NwTxiyi22()

可以看到最小二乘法与噪声为高斯噪声时的极大似然估计法是等价的。

五、线性回归的正则化

  1. 高维小样本的问题

w ^ = ( X T X ) − 1 X T Y \hat{w}=(X^{T}X)^{-1}X^{T}Y w^=(XTX)1XTY

当样本数 N N N远大于维度 p p p X T X X^{T}X XTX可逆,而当出现高维小样本的情况即维度 p p p大于样本数 N N N时, X T X X^{T}X XTX就不可逆,这种时候就容易出现过拟合的情况。

  1. 处理过拟合的方法

面对上述过拟合的现象有一些解决方案,主要有 { 增 加 数 据 量 特 征 选 择 / 特 征 提 取 正 则 化 \left\{\begin{matrix} 增加数据量\\ 特征选择/特征提取\\ 正则化 \end{matrix}\right. /

特征选择指的是根据某种规则去掉一些特征来实现降维;特征提取的方法例如主成分分析(PCA),也是实现降维;正则化的方法指给损失函数添加惩罚项来避免过拟合。

  1. 正则化的方法

通过最小化 J ( w ) = L ( w ) ‾ l o s s + λ P ( w ) ‾ p e n a l t y J(w)=\underset{loss}{\underline{L(w)}}+\lambda \underset{penalty}{\underline{P(w)}} J(w)=lossL(w)+λpenaltyP(w)来实现正则化,主要有L1正则化和L2正则化(也叫岭回归、权重衰减)。

{ L 1 正 则 化 ( L a s s o ) : P ( w ) = ∥ w ∥ 1 L 2 正 则 化 ( R i d g e ) : P ( w ) = ∥ w ∥ 2 2 \left\{\begin{matrix} L1正则化(Lasso):P(w)=\left \| w\right \|_{1}\\ L2正则化(Ridge):P(w)=\left \| w\right \|_{2}^{2} \end{matrix}\right. {L1(Lasso)P(w)=w1L2(Ridge)P(w)=w22

下面为L2正则化的求解过程:

J ( w ) = L ( w ) + λ P ( w ) = ( w T X T − Y T ) ( X w − Y ) + λ w T w = w T X T X w − 2 w T X T Y + Y T Y + λ w T w = w T ( X T X + λ I ) w − 2 w T X T Y + Y T Y w ^ = a r g m i n w J ( w ) ∂ J ( w ) ∂ w = 2 ( X T X + λ I ) w − 2 X T Y = 0 w ^ = ( X T X + λ I ) − 1 X T Y J(w)=L(w)+\lambda P(w)\\ =(w^{T}X^{T}-Y^{T})(Xw-Y)+\lambda w^{T}w\\ =w^{T}X^{T}Xw-2w^{T}X^{T}Y+Y^{T}Y+\lambda w^{T}w\\ =w^{T}(X^{T}X+\lambda I)w-2w^{T}X^{T}Y+Y^{T}Y\\ \hat{w}=\underset{w}{argmin}J(w)\\ \frac{\partial J(w)}{\partial w}=2(X^{T}X+\lambda I)w-2X^{T}Y=0\\ \hat{w}=(X^{T}X+\lambda I)^{-1}X^{T}Y J(w)=L(w)+λP(w)=(wTXTYT)(XwY)+λwTw=wTXTXw2wTXTY+YTY+λwTw=wT(XTX+λI)w2wTXTY+YTYw^=wargminJ(w)wJ(w)=2(XTX+λI)w2XTY=0w^=(XTX+λI)1XTY

半正定矩阵 X T X X^{T}X XTX加上对角矩阵 λ I \lambda I λI一定是可逆的,可以解决 X T X X^{T}X XTX可能不可逆带来的问题。

六、最小二乘法与最大后验估计

  1. 已知

仍然认为实际值与估计值之间的差是一个高斯噪声,即 y y y f ( w ) f(w) f(w)满足关系:

y = f ( w ) + ε = w T x + ε 其 中 ε 是 高 斯 噪 声 , 满 足 ε ∼ N ( 0 , σ 2 ) 因 此 y ∣ x ; w ∼ N ( w T x , σ 2 ) , 即 P ( y ∣ x ; w ) = 1 2 π σ e x p { − ( y − w T x ) 2 2 σ 2 } y=f(w)+\varepsilon =w^{T}x+\varepsilon \\ 其中\varepsilon是高斯噪声,满足\varepsilon\sim N(0,\sigma ^{2})\\ 因此y|x;w\sim N(w^{T}x,\sigma ^{2}),即P(y|x;w)=\frac{1}{\sqrt{2\pi }\sigma }exp\left \{-\frac{(y-w^{T}x)^{2}}{2\sigma ^{2}}\right \} y=f(w)+ε=wTx+εεεN(0,σ2)yx;wN(wTx,σ2)P(yx;w)=2π σ1exp{2σ2(ywTx)2}

另外假设参数 w w w的服从先验分布:

w ∼ N ( 0 , σ 0 2 ) , 即 P ( w ) = 1 2 π σ 0 e x p { − ∥ w ∥ 2 2 2 σ 0 2 } 后 验 概 率 为 P ( w ∣ Y ) = P ( Y ∣ w ) P ( w ) P ( Y ) ( 这 里 的 Y 指 Y ∣ X , 为 书 写 简 单 而 省 略 。 ) w\sim N(0,\sigma _{0}^{2}),即P(w)=\frac{1}{\sqrt{2\pi }\sigma_{0}}exp\left \{-\frac{\left \| w\right \|_{2}^{2}}{2\sigma _{0}^{2}}\right \}\\ 后验概率为P(w|Y)=\frac{P(Y|w)P(w)}{P(Y)}(这里的Y指Y|X,为书写简单而省略。) wN(0,σ02)P(w)=2π σ01exp{2σ02w22}P(wY)=P(Y)P(Yw)P(w)(YYX)

  1. 最大后验估计法求解参数 w w w

w ^ = a r g m a x w P ( w ∣ Y ) = a r g m a x w P ( Y ∣ w ) P ( w ) P ( Y ) = a r g m a x w P ( Y ∣ w ) P ( w ) = a r g m a x w   l o g P ( Y ∣ w ) P ( w ) = a r g m a x w   l o g ∏ i = 1 N P ( y i ∣ w ) P ( w ) = a r g m a x w ∑ i = 1 N l o g P ( y i ∣ w ) P ( w ) = a r g m a x w ∑ i = 1 N l o g ( 1 2 π σ 1 2 π σ 0 e x p { − ( y − w T x ) 2 2 σ 2 − ∥ w ∥ 2 2 2 σ 0 2 } ) = a r g m a x w ∑ i = 1 N ( l o g 1 2 π σ 1 2 π σ 0 + l o g   e x p { − ( y − w T x ) 2 2 σ 2 − ∥ w ∥ 2 2 2 σ 0 2 } ) = a r g m a x w ∑ i = 1 N ( − ( y − w T x ) 2 2 σ 2 − ∥ w ∥ 2 2 2 σ 0 2 ) = a r g m i n w ∑ i = 1 N ( ( y − w T x ) 2 2 σ 2 + ∥ w ∥ 2 2 2 σ 0 2 ) = a r g m i n w ∑ i = 1 N ( ( y − w T x ) 2 ⏟ L S E + σ 2 σ 0 2 ⏟ λ ∥ w ∥ 2 2 ) \hat{w}=\underset{w}{argmax}P(w|Y)\\ =\underset{w}{argmax}\frac{P(Y|w)P(w)}{P(Y)}\\ =\underset{w}{argmax}P(Y|w)P(w)\\ =\underset{w}{argmax}\, logP(Y|w)P(w)\\ =\underset{w}{argmax}\, log\prod_{i=1}^{N}P(y_{i}|w)P(w)\\ =\underset{w}{argmax}\sum_{i=1}^{N}logP(y_{i}|w)P(w)\\ =\underset{w}{argmax}\sum_{i=1}^{N}log(\frac{1}{\sqrt{2\pi }\sigma}\frac{1}{\sqrt{2\pi }\sigma_{0}}exp\left \{-\frac{(y-w^{T}x)^{2}}{2\sigma ^{2}}-\frac{\left \| w\right \|_{2}^{2}}{2\sigma _{0}^{2}}\right \})\\ =\underset{w}{argmax}\sum_{i=1}^{N}(log\frac{1}{\sqrt{2\pi }\sigma}\frac{1}{\sqrt{2\pi }\sigma_{0}}+log\, exp\left \{-\frac{(y-w^{T}x)^{2}}{2\sigma ^{2}}-\frac{\left \| w\right \|_{2}^{2}}{2\sigma _{0}^{2}}\right \})\\ =\underset{w}{argmax}\sum_{i=1}^{N}(-\frac{(y-w^{T}x)^{2}}{2\sigma ^{2}}-\frac{\left \| w\right \|_{2}^{2}}{2\sigma _{0}^{2}})\\ =\underset{w}{argmin}\sum_{i=1}^{N}(\frac{(y-w^{T}x)^{2}}{2\sigma ^{2}}+\frac{\left \| w\right \|_{2}^{2}}{2\sigma _{0}^{2}})\\ =\underset{w}{argmin}\sum_{i=1}^{N}(\underset{LSE}{\underbrace{(y-w^{T}x)^{2}}}+\underset{\lambda }{\underbrace{\frac{\sigma ^{2}}{\sigma _{0}^{2}}}}\left \| w\right \|_{2}^{2}) w^=wargmaxP(wY)=wargmaxP(Y)P(Yw)P(w)=wargmaxP(Yw)P(w)=wargmaxlogP(Yw)P(w)=wargmaxlogi=1NP(yiw)P(w)=wargmaxi=1NlogP(yiw)P(w)=wargmaxi=1Nlog(2π σ12π σ01exp{2σ2(ywTx)22σ02w22})=wargmaxi=1N(log2π σ12π σ01+logexp{2σ2(ywTx)22σ02w22})=wargmaxi=1N(2σ2(ywTx)22σ02w22)=wargmini=1N(2σ2(ywTx)2+2σ02w22)=wargmini=1N(LSE (ywTx)2+λ σ02σ2w22)

可以看到正则化的最小二乘法与噪声为高斯噪声且先验也是高斯分布时的最大后验估计法是等价的。

  1. 总结

L S E ⇔ M L E ( n o i s e 为 G a u s s i a n D i s t r i b u t i o n ) R e g u l a r i z e d   L S E ⇔ M A P ( n o i s e 、 p r i o r 为 G a u s s i a n D i s t r i b u t i o n ) LSE\Leftrightarrow MLE(noise为Gaussian Distribution)\\ Regularized \: LSE\Leftrightarrow MAP(noise、prior为Gaussian Distribution) LSEMLE(noiseGaussianDistribution)RegularizedLSEMAP(noisepriorGaussianDistribution)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值