Chapter 6 (Orthogonality and Least Squares): Orthogonal projections (正交投影)

本文为《Linear algebra and its applications》的读书笔记

Orthogonal projections

  • Given a vector y \boldsymbol y y and a subspace W W W in R n \mathbb R^n Rn, there is a vector y ^ \hat \boldsymbol y y^ in W W W such that
    • (1) y ^ \hat \boldsymbol y y^ is the unique vector in W W W for which y − y ^ \boldsymbol y -\hat\boldsymbol y yy^ is orthogonal to W W W
    • (2) y ^ \hat\boldsymbol y y^ is the unique vector in W W W closest to y \boldsymbol y y
      在这里插入图片描述

EXAMPLE 1

Let { u 1 , . . . , u 5 } \{\boldsymbol u_1,...,\boldsymbol u_5\} {u1,...,u5} be an orthogonal basis for R 5 \mathbb R^5 R5 and let
在这里插入图片描述Consider the subspace W = S p a n { u 1 , u 2 } W = Span \{\boldsymbol u_1,\boldsymbol u_2\} W=Span{u1,u2}, and write y \boldsymbol y y as the sum of a vector z 1 \boldsymbol z_1 z1 in W W W and a vector z 2 \boldsymbol z_2 z2 in W ⊥ W^\perp W.

SOLUTION

在这里插入图片描述


  • The next theorem shows that the decomposition y = z 1 + z 2 \boldsymbol y =\boldsymbol z_1 +\boldsymbol z_2 y=z1+z2 in Example 1 can be computed without having an orthogonal basis for R n \mathbb R^n Rn. It is enough to have an orthogonal basis only for W W W .

在这里插入图片描述

  • The vector y ^ \hat \boldsymbol y y^ in (1) is called the orthogonal projection of y \boldsymbol y y onto W W W and often is written as p r o j W y proj_W\boldsymbol y projWy. When W W W is a one-dimensional subspace, the formula for y ^ \hat\boldsymbol y y^ matches the formula given in Section 6.2.
    在这里插入图片描述

PROOF

We may assume that W W W is not the zero subspace, for otherwise W ⊥ = R n W^\perp=\mathbb R^n W=Rn and (1) is simply y = 0 + y \boldsymbol y =\boldsymbol 0+\boldsymbol y y=0+y. The next section will show that any nonzero subspace of R n \mathbb R^n Rn has an orthogonal basis.

  • Let { u 1 , . . . , u p } \{\boldsymbol u_1,...,\boldsymbol u_p\} {u1,...,up} be any orthogonal basis for W W W , and define y ^ \hat\boldsymbol y y^ by (2). Let z = y − y ^ \boldsymbol z =\boldsymbol y -\hat\boldsymbol y z=yy^, then
    在这里插入图片描述Thus z \boldsymbol z z is orthogonal to u 1 \boldsymbol u_1 u1. Similarly, z \boldsymbol z z is orthogonal to each u j \boldsymbol u_j uj in the basis for W W W. Hence z \boldsymbol z z is orthogonal to every vector in W W W . That is, z \boldsymbol z z is in W ⊥ W^\perp W.
  • To show that the decomposition in (1) is unique, suppose y \boldsymbol y y can also be written as y = y ^ 1 + z 1 \boldsymbol y =\hat\boldsymbol y_1 +\boldsymbol z_1 y=y^1+z1, with y ^ 1 \hat\boldsymbol y_1 y^1 in W W W and z 1 \boldsymbol z_1 z1 in W ⊥ W^\perp W. Then y ^ + z = y ^ 1 + z 1 \hat\boldsymbol y+\boldsymbol z =\hat\boldsymbol y_1+\boldsymbol z_1 y^+z=y^1+z1, and so
    y ^ − y ^ 1 = z 1 − z \hat\boldsymbol y-\hat\boldsymbol y _1=\boldsymbol z_1-\boldsymbol z y^y^1=z1zThis equality shows that the vector v = y ^ − y ^ 1 \boldsymbol v =\hat\boldsymbol y-\hat\boldsymbol y_1 v=y^y^1 is in W W W and in W ⊥ W^\perp W. Hence v ⋅ v = 0 \boldsymbol v\cdot \boldsymbol v = 0 vv=0, which shows that v = 0 \boldsymbol v =\boldsymbol 0 v=0. This proves that y ^ = y ^ 1 \hat\boldsymbol y=\hat\boldsymbol y_1 y^=y^1 and also z 1 = z \boldsymbol z_1 =\boldsymbol z z1=z.

EXERCISE

Suppose that { u 1 , u 2 } \{\boldsymbol u_1, \boldsymbol u_2\} {u1,u2} is an orthogonal set of nonzero vectors in R 3 \mathbb R^3 R3. How would you find an orthogonal basis of R 3 \mathbb R^3 R3 that contains u 1 \boldsymbol u_1 u1 and u 2 \boldsymbol u_2 u2?

SOLUTION

  • First, find a vector v \boldsymbol v v in R 3 \mathbb R^3 R3 that is not in the subspace W W W spanned by u 1 \boldsymbol u_1 u1 and u 2 \boldsymbol u_2 u2. Let u 3 = v − p r o j W v \boldsymbol u_3=\boldsymbol v-proj_W\boldsymbol v u3=vprojWv, then { u 1 , u 2 , u 3 } \{\boldsymbol u_1, \boldsymbol u_2, \boldsymbol u_3\} {u1,u2,u3} is an orthogonal basis.

EXERCISE 23

Let A A A be an m × n m \times n m×n matrix. Prove that every vector x \boldsymbol x x in R n \mathbb R^n Rn can be written in the form x = p + u \boldsymbol x=\boldsymbol p +\boldsymbol u x=p+u, where p \boldsymbol p p is in R o w A RowA RowA and u \boldsymbol u u is in N u l A NulA NulA. Also, show that if the equation A x = b A\boldsymbol x =\boldsymbol b Ax=b is consistent, then there is a unique p \boldsymbol p p in R o w A RowA RowA such that A p = b A\boldsymbol p=\boldsymbol b Ap=b.

SOLUTION

  • By the Orthogonal Decomposition Theorem, each x \boldsymbol x x in R n \mathbb R^n Rn can be written uniquely as x = p + u \boldsymbol x = \boldsymbol p + \boldsymbol u x=p+u, with p \boldsymbol p p in R o w A Row A RowA and u \boldsymbol u u in ( R o w A ) ⊥ = N u l   A (Row A)^\perp=Nul\ A (RowA)=Nul A.
  • Next, suppose that A x = b A\boldsymbol x = \boldsymbol b Ax=b is consistent. Let x \boldsymbol x x be a solution, and write x = p + u \boldsymbol x = \boldsymbol p +\boldsymbol u x=p+u, as above. Then A p = A ( x – u ) = A x – A u = b – 0 = b A\boldsymbol p = A(\boldsymbol x – \boldsymbol u) = A\boldsymbol x – A\boldsymbol u = \boldsymbol b – \boldsymbol 0 = \boldsymbol b Ap=A(xu)=AxAu=b0=b. So the equation A x = b A\boldsymbol x = \boldsymbol b Ax=b has at least one solution p \boldsymbol p p in R o w A Row A RowA.
  • Finally, suppose that p \boldsymbol p p and p 1 \boldsymbol p_1 p1 are both in R o w A Row A RowA and satisfy A x = b A\boldsymbol x = \boldsymbol b Ax=b. Then p – p 1 \boldsymbol p – \boldsymbol p_1 pp1 is in N u l A Nul A NulA because A ( p – p 1 ) = A p – A p 1 = b – b = 0 A (\boldsymbol p – \boldsymbol p_1) = A\boldsymbol p – A\boldsymbol p_1 = \boldsymbol b – \boldsymbol b = \boldsymbol 0 A(pp1)=ApAp1=bb=0The equations p = p 1 + ( p – p 1 ) \boldsymbol p = \boldsymbol p_1 + (\boldsymbol p – \boldsymbol p_1) p=p1+(pp1) and p = p + 0 \boldsymbol p = \boldsymbol p + \boldsymbol 0 p=p+0 both decompose p \boldsymbol p p as the sum of a vector in R o w A Row A RowA and a vector in ( R o w A ) T (Row A)^T (RowA)T. By the uniqueness of the orthogonal decomposition (Theorem 8), p 1 = p \boldsymbol p_1 = \boldsymbol p p1=p, so p \boldsymbol p p is unique.

A Geometric Interpretation of the Orthogonal Projection

  • When W W W is a one-dimensional subspace, the formula (2) for p r o j W y proj_W \boldsymbol y projWy contains just one term. Thus, when d i m W > 1 dimW > 1 dimW>1, each term in (2) is itself an orthogonal projection of y \boldsymbol y y onto a one-dimensional subspace spanned by one of the u \boldsymbol u u’s in the basis for W W W . Figure 3 illustrates this when W W W is a subspace of R 3 \mathbb R^3 R3 spanned by u 1 \boldsymbol u_1 u1 and u 2 \boldsymbol u_2 u2.
    在这里插入图片描述

Properties of Orthogonal Projections

在这里插入图片描述

  • This fact also follows from the next theorem.

在这里插入图片描述

最佳逼近定理

  • The vector y \boldsymbol y y in Theorem 9 is called the best approximation to y \boldsymbol y y by elements of W W W( W W W 中元素对 y \boldsymbol y y 的最佳逼近).
    • Later sections in the text will examine problems where a given y \boldsymbol y y must be replaced, or approximated, by a vector v \boldsymbol v v in some fixed subspace W W W . The distance ∥ y − v ∥ \left\|\boldsymbol y-\boldsymbol v\right\| yv, can be regarded as the “error” of using v \boldsymbol v v in place of y \boldsymbol y y. Theorem 9 says that this error is minimized when v = y ^ \boldsymbol v =\hat\boldsymbol y v=y^.
  • Inequality (3) leads to a new proof that y ^ \hat\boldsymbol y y^ does not depend on the particular orthogonal basis used to compute it.

PROOF

  • Take v \boldsymbol v v in W W W distinct from y ^ \hat\boldsymbol y y^. See Figure 4. Then y − y ^ \boldsymbol y -\hat \boldsymbol y yy^ is orthogonal to y ^ − v \hat\boldsymbol y-\boldsymbol v y^v (which is in W W W). Since
    在这里插入图片描述the Pythagorean Theorem(勾股定理) gives
    在这里插入图片描述Now ∥ y ^ − v ∥ > 0 \left\|\hat\boldsymbol y -\boldsymbol v\right\| > 0 y^v>0 , and so inequality (3) follows immediately.
    在这里插入图片描述

  • The final theorem in this section shows how formula (2) for p r o j W y proj_W \boldsymbol y projWy is simplified when the basis for W W W is an orthonormal set.

在这里插入图片描述

  • Suppose U U U is an n × p n \times p n×p matrix with orthonormal columns, and let W W W be the column space of U U U. Then
    在这里插入图片描述

EXAMPLE

Let W W W be a subspace of R n \mathbb R^n Rn. Let x \boldsymbol x x and y \boldsymbol y y be vectors in R n \mathbb R^n Rn and let z = x + y \boldsymbol z =\boldsymbol x + \boldsymbol y z=x+y. If u \boldsymbol u u is the projection of x \boldsymbol x x onto W W W and v \boldsymbol v v is the projection of y \boldsymbol y y onto W W W , show that u + v \boldsymbol u + \boldsymbol v u+v is the projection of z \boldsymbol z z onto W W W .

SOLUTION

  • Let U U U be a matrix whose columns consist of an orthonormal basis for W W W . Then
    p r o j W z = U U T z = U U T ( x + y ) = U U T x + U U T y = p r o j W x + p r o j W y = u + v \begin{aligned}proj_W\boldsymbol z &= UU^T\boldsymbol z \\&= UU^T (\boldsymbol x + \boldsymbol y)\\&= UU^T \boldsymbol x + UU^T \boldsymbol y \\&= proj_W \boldsymbol x + proj_W \boldsymbol y \\&=\boldsymbol u +\boldsymbol v\end{aligned} projWz=UUTz=UUT(x+y)=UUTx+UUTy=projWx+projWy=u+v
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
语音W-Disjoint Orthogonality(WDO)是一种短时正交特性,它在语音处理中具有重要作用。短时正交特性是指在短时间内,不同的语音信号之间具有正交性,即彼此之间相互独立且互不干扰。 语音信号通常由一系列短时帧组成,每个帧的持续时间通常在10至30毫秒之间。在WDO中,不同的语音信号通过应用窗函数来加以分析和处理,通常使用的窗函数是矩形窗和汉宁窗。这些窗函数的作用是在时间域上将信号切割成较小的窗口以进行进一步的分析。 在窗函数应用后,信号会在频域上转换为复数值的频谱表示,同时每个频率分量也会变为相位和振幅。WDO利用这些频域的相位信息来判断不同的语音信号之间是否正交。如果两个语音信号之间的频域相位信息相互独立,则它们在时间上是正交的。 WDO的短时正交特性在语音信号识别、语音合成和语音增强等领域非常有用。通过分析和利用不同语音信号之间的正交性,可以准确地分离和识别不同的语音成分,从而提高语音信号的质量和可识别性。同时,WDO还可以用于去除背景噪声和改善语音信号的清晰度。 总之,语音W-Disjoint Orthogonality(WDO)是一种基于短时正交特性的语音处理方法。它通过分析语音信号的频域相位信息,判断不同语音信号之间的正交性,从而提高语音信号的质量和可识别性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值