经典子空间学习的多视图学习方法——正交鉴别投影(Orthogonal Discriminant Projection, ODP)

正交鉴别投影(Orthogonal Discriminant Projection, ODP)是一种用于分类任务线性降维技术,它的目标是找到一个投影,使得在投影后的低维空间中,不同类别的数据点尽可能分开,而同类别的数据点尽可能靠近。

ODP与线性鉴别分析(Linear Discriminant Analysis, LDA)类似,但ODP强调了投影方向的正交性,这意味着每一个投影方向都是相互独立的,这有助于提高分类的效率和准确性。

公式和解释

ODP的主要公式涉及到了类间散度矩阵 S b S_b Sb类内散度矩阵 S w S_w Sw。这两个矩阵描述了数据的分布情况,是ODP进行投影方向选择的基础

类内散度矩阵 S w S_w Sw

类内散度矩阵衡量了同一类别内部样本的分散程度,我们希望这个矩阵越小越好,这意味着同一类内的样本点在投影后的空间中更加聚集。

S w = ∑ i = 1 C ∑ j = 1 N i ( x j ( i ) − μ i ) ( x j ( i ) − μ i ) T S_w = \sum_{i=1}^{C} \sum_{j=1}^{N_i} (x_j^{(i)} - \mu_i) (x_j^{(i)} - \mu_i)^T Sw=i=1Cj=1Ni(xj(i)μi)(xj(i)μi)T

  • C C C类别数;
  • N i N_i Ni 是第 i i i 类的样本数;
  • x j ( i ) x_j^{(i)} xj(i) 是第 i i i 类中的第 j j j样本
  • μ i \mu_i μi 是第 i i i 类的样本均值向量。
类间散度矩阵 S b S_b Sb

类间散度矩阵描述了不同类别中心之间的距离,我们希望这个矩阵越大越好,这意味着不同类别的样本点在投影后的空间中更加分离。

S b = ∑ i = 1 C N i ( μ i − μ ) ( μ i − μ ) T S_b = \sum_{i=1}^{C} N_i (\mu_i - \mu) (\mu_i - \mu)^T Sb=i=1CNi(μiμ)(μiμ)T

  • N i N_i Ni 是第 i i i 类的样本数;
  • μ i \mu_i μi 是第 i i i 类的样本均值向量。
  • μ \mu μ所有样本的总均值向量。
投影矩阵 W W W

ODP的目标是找到一个投影矩阵 W W W,使得投影后的数据满足最大类间散度和最小类内散度。然而,ODP还要求投影方向正交,这通常通过求解广义特征值问题来实现:

S b W = λ S w W S_b W = \lambda S_w W SbW=λSwW

其中 λ \lambda λ 是广义特征值。为了确保投影方向正交,我们选取广义特征值对应的特征向量作为投影矩阵 W W W列向量
这些特征向量不仅能够最大化类间差异,还能保持正交性,从而在低维空间中更好地分离不同类别的数据。

实现细节

在实际中,求解上述广义特征值问题可能涉及到矩阵的逆运算,但由于 S w S_w Sw 可能是奇异的(即非满秩),直接求逆可能导致计算不稳定。
因此,实践中通常采用更稳定的算法,如奇异值分解(SVD)来间接求解广义特征值问题,或者使用正则化技术来确保 S w S_w Sw 是正定的。

小结

正交鉴别投影是一种有效的降维技术,尤其适用于分类任务。通过优化类内和类间散度矩阵的比例,ODP能够找到一组正交的投影方向,这些方向不仅能够增强不同类别的可分性,还能保持投影方向之间的独立性,从而提高分类的效率和准确性。

  • 17
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值