mot数据集_谈谈ReID与MOT的关系

本文探讨了ReID(行人重识别)在多目标跟踪(MOT)任务中的角色,强调了ReID与MOT的联系和差异。文章介绍了几种MOT/MTMC(跨摄像头多目标跟踪)中的ReID框架设计,如DeepCC的自适应三元组损失函数、NOTA的时空注意力网络、LAAM的局部邻域和全局样本训练策略,以及STRN的运动表观特征融合。总结了在应用ReID于MOT时需要注意的数据集构建、网络设计、训练策略和特征融合等问题。
摘要由CSDN通过智能技术生成

fd15c630dbdc3bf82700794e31aea199.png

1.ReID与MOT的联系

在MOT任务中,一般常用的特征模型有运动模型和表观模型,其中表观模型以行人重识别(ReID)类算法为主流。Re-ID任务主要解决的是跨摄像头场景下行人的识别与检索,其中存在给定了身份的图片序列query,需要为不同摄像头场景下的多组图片gallery的行人身份进行判定。

9bf123bb3121e4a7e1d7345eeaa36b24.png

随着现在视觉任务需求的增加,车辆重识别任务也随之诞生,包括与之对应的数据集。对于多目标跟踪任务而言,由于目前只有行人和车辆的标注,所以基本只针对这两类目标,不过最近出来一个833类的多目标跟踪数据集TAO。以行人为例,多目标跟踪相对于Re-ID多出了空间位置信息和时间联系,其更多的是针对的同一摄像头场景,还包括可能出现的相机运动。除此之外,对于Re-ID任务而言,其不需要考虑新身份的诞生和旧身份的消失,所有目标在query中一般都有对应的身份,而MOT任务中需要判定是否有可能不存在现有跟踪轨迹中,是否需要与已经丢失跟踪轨迹身份进行匹配等等,二者的异同总结如下:

8ecd111ccfeb1394cfc3efc33b93af93.png

其中,目标序列严格对称的意思是指的待比对的两个序列中,目标的id是否一致,如果不一致,则表明两个序列各自可能存在新的目标。

借鉴这个问题里面的回答行人重识别(re-ID)与跟踪(tracking)有什么区别

48960af4569f1aab963b4d075c12ed3d.png

我们可以看到ReID是一个相对底层的任务,随着检测、时序信息的加入,就可以拓展至行人检索和视频ReID任务,再引入MOT则可以得到更为高层的任务MTMC(跨摄像头多目标跟踪)。实际上ReID只是个任务名,我们不要将其具象化成了某一类数据集或者某一类深度框架,我们甚至可以直接用传统的图像特征来应用于这个任务,关键要看这个任务的定义。

2.MOT/MTMC中的ReID框架设计

2.1 DeepCC

论文题目: Features for multi-target multi-camera tracking and re-identification
作者:Ergys Ristani,Carlo Tomasi
备注信息:CVPR2018
论文链接: https:// arxiv.org/pdf/1803.1085 9.pdf
代码链接: https:// github.com/SamvitJ/Duke -DeepCC

考虑到MOT和MTMC在表征模型方面的相似性,我们一并介绍。DeepCC是MTMC领域的一篇经典论文,我们可以先看看MTMC的基础流程:

d6a70d587f97c5b7556d57bc104ef326.png

给定多个摄像头的视频流,由检测器得到所有的观测行人信息,通过提取每个人的特征对每个行人进行关联匹配/聚类,最后通过后处理进行完善。这篇论文主要做的是ReID任务在MTMC任务上的适配,其

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值