数学符号arg的含义

argument of the maximum/minimum

arg max f(x): 当f(x)取最大值时,x的取值
在这里插入图片描述
arg min f(x):当f(x)取最小值时,x的取值

表示使目标函数取最小值时的变量值
From Wikipedia

In mathematics, arg max (or argmax) stands for the argument of the maximum, that is to say, the set of points of the given argument for which the value of the given expression attains its maximum value:[note 1]

\underset{x}{\operatorname{arg,max}} , f(x) := {x\ |\ \forall y : f(y) \le f(x)}
In other words,

\underset{x}{\operatorname{arg,max}} , f(x)
is the set of values of x for which f(x) has the largest value M. For example, if f(x) is 1−|x|, then it attains its maximum value of 1 at x = 0 and only there, so \underset{x}{\operatorname{arg,max}} , (1-|x|) = {0}.

Equivalently, if M is the maximum of f, then the arg max is the level set of the maximum:

\underset{x}{\operatorname{arg,max}} , f(x) = f^{-1}(M) = {x\ |\ f(x) = M }
If the maximum is reached at a single value, then one refers to the point as the arg max, meaning we define the arg max as a point, not a set of points. So, for example,

\underset{x\in \Bbb{R}}{\operatorname{arg,max}} (x(10-x)) = 5 //只有一个值使函数取最大值,则arg为该值
(rather than the singleton set {5}), since the maximum value of x(10 − x) is 25, which happens when x = 5.[note 2]

However, in case the maximum is reached at many values, arg max is a set of points.

Then, we have for example

\underset{x \in [0,4\pi]}{\operatorname{arg,max}} , \cos(x) = {0,2\pi,4\pi} //若多个值使函数取最大值,则arg为集合
since the maximum value of cos(x) is 1, which happens on this interval when x = 0, 2π or 4π. On the whole real line, the arg max is {0, 2\pi, -2\pi, 4\pi, \dots }.

arg min (or argmin) is defined analogously.

Note also that functions do not in general attain a maximum value, and hence will in general not have an arg max: \underset{x\in \Bbb{R}}{\operatorname{arg,max}}, x is undefined, as x is unbounded on the real line. However, by the extreme value theorem (or the classical compactness argument), a continuous function on a compact interval has a maximum, and thus an arg max. //若无法取到最大值,无定义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

和你在一起^_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值