Langchain-Chatchat 从入门到精通(基于本地知识库的问答系统)(更新中)

文章介绍了Langchain-Chatchat项目,一个基于本地知识库的中文问答应用,支持离线部署和多种开源模型。详细讲解了快速上手步骤,包括硬件需求、环境配置、模型下载、初始化配置以及常见问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。(本文侧重于整个项目的理解和内容调节,如部署遇到问题请看结尾的其他参考文章)

一、Langchain-Chatchat介绍

1-1、Langchain-Chatchat介绍

在这里插入图片描述
Langchain-Chatchat 项目地址: https://github.com/chatchat-space/Langchain-Chatchat

一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。

依托于本项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。

本项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的 top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt中 -> 提交给 LLM生成回答。

1-2、LangChain+ChatGLM 工作流

项目实现原理如下:

  • 加载文件
  • 读取文本
  • 文本分割
  • 文本向量化
  • 问句向量化
  • 在文本向量中匹配出与问句向量最相似的top k个
  • 匹配出的文本作为上下文和问题一起添加到Prompt中去
  • 提交给LLM生成回答
    在这里插入图片描述

1-3、文档角度的工作流

在这里插入图片描述

二、快速上手

Notice: 强烈建议直接使用镜像!!!个人去搭建环境真的会遇到亿点点问题😍

2-0、硬件要求

如果想要顺利在GPU运行本地模型的 FP16 版本,你至少需要以下的硬件配置,来保证在我们框架下能够实现 稳定连续对话

ChatGLM3-6B & LLaMA-7B-Chat 等 7B模型

  • 最低显存要求: 14GB
  • 推荐显卡: RTX 4080

Qwen-14B-Chat 等 14B模型

  • 最低显存要求: 30GB
  • 推荐显卡: V100

Yi-34B-Chat 等 34B模型

  • 最低显存要求: 69GB
  • 推荐显卡: A100

Qwen-72B-Chat 等 72B模型

  • 最低显存要求: 145GB
  • 推荐显卡:多卡 A100 以上

注意: 以上显存占用仅供参考,实际占用请以nvidia-smi为准

2-1、环境配置

# 拉取仓库
$ git clone https://github.com/chatchat-space/Langchain-Chatchat.git

# 进入目录
$ cd Langchain-Chatchat

# 安装全部依赖
$ pip install -r requirements.txt 
$ pip install -r requirements_api.txt
$ pip install -r requirements_webui.txt  

# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。

2-2、模型下载

下载模型要先安装lfs:https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
备注: 下载模型可能会因为网络问题无法下载,可以考虑不翻墙的方法,在魔搭社区下载!https://modelscope.cn/models

$ git lfs install
$ git clone https://huggingface.co/THUDM/chatglm3-6b
$ git clone https://huggingface.co/BAAI/bge-large-zh

2-3、初始化知识库和配置文件

$ python copy_config_example.py
$ python init_database.py --recreate-vs

更新知识库表

python init_database.py --create-tables

2-4、一键启动

$ python startup.py -a

启动后的界面如下:
在这里插入图片描述

其他

# api服务启动,访问0.0.0.0:7861/docs
python server/api.py

# Web UI服务启动,访问http://localhost:8501/
streamlit run webui.py

三、配置文件详解(config目录下)

3-1、basic_config

basic_config介绍: 基础配置文件,记录日志格式、日志存储路径以及临时文件目录。一般无需修改。

代码界面截图如下所示
在这里插入图片描述

3-2、kb_config

kb_config介绍: 向量数据库配置、分词器配置、知识库配置等。

代码界面截图如下所示:
在这里插入图片描述

3-3、model_config

model_config介绍: 模型配置项,包括选用的Embedding、要运行的LLM、在线LLM的api、key的配置。

代码界面截图如下所示:

在这里插入图片描述
支持的联网模型:

  • 智谱AI
  • 阿里云通义千问
  • 百川
  • ChatGPT
  • Gimini
  • Azure OpenAI
  • MiniMax
  • 讯飞星火
  • 百度千帆
  • 字节火山方舟

目前支持的本地向量数据库列表如下:

  • FAISS
  • Milvus
  • PGVector
  • Chroma

默认配置如下:

  • LLM: Chatglm3-6b
  • Embedding Models: m3e-base
  • TextSplitter: ChineseRecursiveTextSplitter
  • Kb_dataset: faiss

Notice:

  • TEMPERATURE: 不建议设置太高,在比较严格的场景下建议设置为0或者接近0,如知识库问答,否则模型会一本正经的胡说八道。
  • HISTORY_LEN: 历史对话轮数不建议设置太高,默认为3,如果保留太多会爆显存。

3-4、prompt_config

prompt_config介绍: 提示词配置,包括基础的大模型对话提示词、知识库的对话提示词、搜索引擎的对话提示词、与Agent对话的提示词。

  • llm_chat: 最基本的对话提示词。
  • knowledge_base_chat: 与知识库对话的提示词。
  • agent_chat: 与Agent对话的提示词。

Notice: prompt模板使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号 请注意,本配置文件支持热加载,修改prompt模板后无需重启服务。

代码界面截图如下所示:
在这里插入图片描述

3-5、server_config

server_config介绍: 服务器和端口的配置项,如果需要修改端口号的话可以在这里进行修改。

Notice: 在启动startup.py时,可用通过–model-worker --model-name xxxx指定模型,不指定则为LLM_MODEL

代码界面截图如下所示:

在这里插入图片描述

四、其他问题

4-1、如何开启量化模式?

在配置文件server_config文件里有Load_8bit参数,改为True即可:

在这里插入图片描述

4-2、加载其他模型?

  • 在model_config文件夹里我们可以看到该框架支持的模型:

在这里插入图片描述

  • 首先我们需要在model_config里修改模型以及Embedding的根目录,将下载好的模型放于该根目录下,并且模型文件夹名称要与上边的模型名称一致。例如:mv Qwen1___5-14B/ Qwen1.5-14B-Chat

在这里插入图片描述

  • 若需要使用在线模型,只需把申请好的API_KEY等填入即可。

在这里插入图片描述

  • 模型下载请去结尾参考文章魔搭社区官网下载。

4-3、加载BaiChuan模型报错AttributeError: ‘BaichuanTokenizer’ object has no attribute ‘sp_model’

解决方法: 由于版本冲突导致,需要更改以下包的版本

pip install transformers==4.33.3
pip install torch==2.0.1
pip install triton==2.0.0

4-4、加载通义千问模型报错KeyError: ‘qwen2’

解决方法: 由于版本冲突导致,需要更改以下包的版本

# 大于这个版本也是ok的
pip install --upgrade transformers==4.37.2

(腹语): 这个transformers版本是没法加载BaiChuan的,所以你只能二选一!

参考文章:

Langchain官方GitHub
Langchain-Chatchat 官方Github
Langchain-Chatchat 官方Github----疑难问题解答
魔搭社区官网
【大模型实践】使用 Langchain-Chatchat 进行本地部署的完整指南).
Langchain-Chatchat + 阿里通义千问Qwen 保姆级教程 | 次世代知识管理解决方案
Langchain-Chatchat大语言模型本地知识库的踩坑、部署、使用
【大模型实践】使用 Langchain-Chatchat 进行本地部署的完整指南
LLMs之RAG:LangChain-Chatchat(一款中文友好的全流程本地知识库问答应用)的简介(支持 FastChat 接入的ChatGLM-2/LLaMA-2等多款主流LLMs+多款embe
Langchain-Chatchat开源库使用的随笔记(一)

总结

确认过眼神,我遇上对的人💕💕💕

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ㄣ知冷煖★

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值