UNet深入解析

UNet深入解析

概述

因为工作需要,重新深入研究医学影像分割的相关内容。(笔者水平有限,有些翻译不到位,直接附上原文。)

而基于深度学习的医学影像分割一个里程碑式的转折点当属U-Net: Convolutional Networks for Biomedical Image Segmentation.专门用于医学影像分割的卷积神经网络。

创新点

主要的创新点有三点:

  • 使用了弹性变形(elastic deformation)的数据增强方式,更高效的从以标注的训练集中进行特征学习;

  • 两条不同策略的神经网络路径:

    • contracting path: 捕捉上下文(capture context)
    • expansion path: 精准定位(precise localization)
  • 少量训练集,高效率:采用端到端(end-to-end)的训练方式,能够从很小的训练集中使用滑动窗(sliding-window)高效训练。

    Moreover, the network is fast.

UNet设计思路

原有神经网络的局限:

滑动窗的训练策略(Deep neural networks segment neuronal membranes in electron microscopy images(2012)):

  • 训练慢:分别训练每一个patch,且由于patch的重叠训练过程存在大量的冗余(redundancy);
  • 定位精度与上下文的均衡:较大的patch会损失精度,较小的patch又只能获取一小部分context;
改进策略:
  • 改进FNC网络设计UNet网络结构,用重采样(upsampling)代替池化操作(pooling operator);在上采样部分,通过大量的特征通道,将上下文信息传播(propagate)到高分辨率layer当中。
  • 特征学习:对训练集进行数据增强,并采用无监督的特征学习方法。
    • elastic deformation数据增强策略:能够从变形的数据中学习固定特征,不用再消耗多余资源去计算变形系数。

UNet神经网络结构

UNet的来源

如图所示,神经网络结构为U-型结构。

  • 左半边为contracting path(Encoder),是一个传统的卷积神经网络结构,两个3x3卷积层,每个卷积层有一个ReLU激活函数和一个2x2降采样的最大池化。-> 捕捉上下文,进行特征提取与学习。
  • 右半边为expansive path(Decoder)。每一个2x2的卷积(up-convolution),将特征通道的数量减半,与contracting path中相应裁剪的特征图的连接。这一步主要是弥补每一步卷积之后边界丢失的像素值。-> 定位,获取精确的位置信息。
    在这里插入图片描述

原理解析

Training
  • Soft-max
    p k = e x p ( a k ( x ) ∑ k ′ = 1 K a k ′ ( x ) ) (1) p_k = exp \left( \frac{a_k(\rm x)}{\sum_{k'=1}^{K}a_k'(\rm x)}\right) \tag{1} pk=exp(k=

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
UNet是一种常用的神经网络架构,用于图像分割任务。UNet的源码解析可以帮助我们深入了解这个架构的工作原理和实现细节。 UNet的源码解析主要包括以下几个方面: 1. 网络结构:UNet的网络结构由编码器(Encoder)和解码器(Decoder)组成。编码器用于提取图像特征,解码器则通过上采样和特征跳跃连接进行图像分割。可以在源码中查看编码器和解码器的具体结构。 2. 损失函数:UNet采用交叉熵损失函数作为目标函数。在源码中可以找到损失函数的定义和计算方式。了解损失函数的实现细节可以帮助我们优化训练过程。 3. 数据预处理:源码中通常会包含数据预处理的部分,如数据增强、归一化等。了解这些预处理的实现方式可以帮助我们理解数据在网络中的传递和处理过程。 4. 训练过程:源码中往往包含训练过程的实现,包括优化器的选择、学习率的调整、模型保存等。深入了解训练过程的实现可以帮助我们更好地进行模型训练和调优。 通过源码解析,我们可以全面了解UNet的实现细节,包括网络结构、损失函数、数据预处理和训练过程。这有助于我们更好地理解和应用UNet,并能够根据需要对其进行相应的修改和优化。同时,源码解析也是学习深度学习和图像分割领域的一种重要方式,可以提升我们的编程和理论水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值