结合创新!通道注意力+UNet,实现高精度分割

在U-Net网络中加入通道注意力机制能显著提升模型的性能!

具体点说是在U-Net的卷积层之后添加一个通道注意力模块,这样这个模块可以学习不同通道之间的权重,并根据这些权重对通道进行加权,从而增强重要通道的特征表示。

这种结合通道注意力的U-Net网络模型对比传统模型,更能捕获图像中的关键信息,并提高模型的分割精度与泛化能力,在面对新的、未见过的图像时也能保持较高的性能。这也是为什么它一直是研究的热点和趋势所在。

本文挑选了9个结合通道注意力+U-Net最新结合方案,可借鉴的方法和创新点做了简单提炼,原文和已开源的代码都整理了,方便同学们学习和复现。

SE-SWIN UNET FOR IMAGE SEGMENTATION OF MAJOR MAIZE FOLIAR DISEASES

方法:论文提出了一个改进的Swin-Unet模型,它结合了通道注意力,专门用于智能农业领域中快速且准确地分割玉米叶片病斑区域的问题。该模型通过引入SENet模块和改进损失函数,在全局和局部学习中应用Swin Transformer模块和跳跃连接结构。在每个跳跃连接处,引入SENet模块通过通道注意力关注全局目标特征,以突出玉米叶病重要区域并抑制无关背景区域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值