文本匹配、文本相似度模型之DSSM

用于学习句子相似性的连体循环架构

转载来自:https://zhuanlan.zhihu.com/p/53326791
github: https://github.com/daiyizheng/shortTextMatch/blob/master/src/DL_model/classic_models/models/DSSM.py

DSSM是Deep Structured Semantic Model的缩写,即我们通常说的基于深度网络的语义模型,其核心思想是将query和doc映射到到共同维度的语义空间中,通过最大化query和doc语义向量之间的余弦相似度,从而训练得到隐含语义模型,达到检索的目的。DSSM有很广泛的应用,比如:搜索引擎检索,广告相关性,问答系统,机器翻译等。

DSSM


典型的DNN结构是将原始的文本特征映射为在语义空间上表示的特征。DNN在搜索引擎排序中主要是有下面2个作用:

  1. 将query中term的高维向量映射为低维语义向量
  2. 根据语义向量计算query与doc之间的相关性分数

通常, x x x用来表示输入的term向量, y y y表示输出向量, l i , i = 1 , . . . , N − 1 l_i, i=1,..., N-1 li,i=1,...,N1表示隐藏层, W i W_i Wi表示第 i i i层的参数矩阵, b i b_i bi表示第 i i i个偏置项。
l 1 = W 1 x l_1=W_1x l1=W1x
l i = f ( W i l i − 1 + b i ) , i = 2 , . . . , N − 1 l_i=f(W_il_{i-1}+b_i), i=2,...,N-1 li=f(Wili1+bi),i=2,...,N1
y = f ( W N l N − 1 + b N ) y=f(W_Nl_{N-1}+b_N) y=f(WNlN1+bN)

这里使用 t a n h tanh tanh作为输出层和隐藏层的激活函数,有下列公式。
f ( x ) = 1 − e − 2 x 1 + e − 2 x f(x)=\frac{1-e^{-2x}}{1+e^{-2x}} f(x)=1+e2x1e2x

在搜索排序中,我们使用 Q Q Q来表示一个query, D D D来表示一个doc,那么他们的相关性分数可以用下面的公式衡量
R ( Q , D ) = c o s i n e ( y Q , y D ) = y Q T y D ∣ ∣ y Q ∣ ∣ ∣ ∣ y D ∣ ∣ R(Q,D)=cosine(y_Q, y_D)=\frac{y_Q^Ty_D}{||y_Q||||y_D||} R(Q,D)=cosine(yQ,yD)=yQyDyQTyD

其中, y Q y_Q yQ y D y_D yD 是query与doc的语义向量。在搜索引擎中,给定一个query,会返回一些按照相关性分数排序的文档。

通常情况下,输入的term向量使用最原始的bag of words特征,通过one-hot进行编码。但是在实际场景中,词典的大小将会非常大,如果直接将该数据输入给DNN,神经网络是无法进行训练和预测的。因此,在DSSM中引入了word hashing的方法,并且作为DNN中的第一层。

word hashing

word hashing方法是用来减少输入向量的维度,该方法基于字母的 n-gram。给定一个单词(good),我们首先增加词的开始和结束部分(#good#),然后将该词转换为字母 n-gram的形式(假设为trigrams:#go,goo,ood,od#)。最后该词使用字母 n-gram的向量来表示。

这种方法的问题在于有可能造成冲突,因为两个不同的词可能有相同的n-gram向量来表示。下图显示了word hashing在2个词典中的统计。与原始的ont-hot向量表示的词典大小相比,word hashing明显降低了向量表示的维度。

DSSM的学习

点击日志里通常包含了用户搜索的query和用户点击的doc,可以假定如果用户在当前query下对doc进行了点击,则该query与doc是相关的。通过该规则,可以通过点击日志构造训练集与测试集。
首先,通过softmax 函数可以把query 与样本 doc 的语义相似性转化为一个后验概率:

其中 γ \gamma γ是一个softmax函数的平滑因子, D D D表示被排序的候选文档集合,在实际中,对于正样本,每一个(query, 点击doc)对,使用 ( Q , D + ) (Q, D^+) (Q,D+)表示;对于负样本,随机选择4个曝光但未点击的doc,用 { D j − ; j = 1 , . . . , 4 } \{D_j^-;j=1,...,4\} {Dj;j=1,...,4}来表示。

在训练阶段,通过极大似然估计来最小化损失函数:

其中 Λ \Lambda Λ表示神经网络的参数。模型通过随机梯度下降(SGD)来进行优化,最终可以得到各网络层的参数 { W i , b i } \{W_i, b_i\} {Wi,bi}

总结

DSSM的提出主要有下面的优点:

  • 解决了LSA、LDA、Autoencoder等方法存在的一个最大的问题:字典爆炸(导致计算复杂度非常高),因为在英文单词中,词的数量可能是没有限制的,但是字母 [公式] -gram的数量通常是有限的
  • 基于词的特征表示比较难处理新词,字母的 [公式] -gram可以有效表示,鲁棒性较强
  • 使用有监督方法,优化语义embedding的映射问题
  • 省去了人工的特征工程

缺点

  • word hashing可能造成冲突
  • DSSM采用了词袋模型,损失了上下文信息
  • 在排序中,搜索引擎的排序由多种因素决定,由于用户点击时doc的排名越靠前,点击的概率就越大,如果仅仅用点击来判断是否为正负样本,噪声比较大,难以收敛
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值