2018 ESWC | Modeling Relational Data with Graph Convolutional Networks

2018 ESWC | Modeling Relational Data with Graph Convolutional Networks

Paper: https://arxiv.org/pdf/1703.06103.pdf
Code: https://github.com/JinheonBaek/RGCN

RGCN :GCN 在多边类型的应用

本文中作者提出的R-GCN模型应用于链路预测和实体分类两项任务上,对于链路预测任务,通过在关系图中的多个推理步骤中使用编码器模型来积累信息,可以显著改进链路预测的模型;对于实体分类任务,则是类似于GCN论文中,即对每个节点使用一个softmax分类器,通过R-GCN来提取每个节点表示用于节点类别的预测。

本篇论文最主要的贡献有三:

  1. 将GCN框架应用于关系数据建模,特别是链路预测和实体分类任务。
  2. 在具有大量关系的多图中应用了参数共享以及实现稀疏约束的技术
  3. 使用一个在关系图中执行多步信息传播的模型来加强因子分解模型。

模型

GCN模型

R-GCN和GCN都是利用图卷积模型来模拟信息在网络结构中的传递,因此那这个部分的一个框架可以如下所示:

其中:

g m g_m gm指的就是将传入的消息进行聚合并通过激活函数传递
M i M_i Mi指的是节点 v i v_i vi 的传入消息集,通常选择为传入的边集
h i ( l ) h_i^{(l)} hi(l)指的是节点 i i i的第 l l l层节点表示,
h j ( l ) h_j^{(l)} hj(l)指的是节点 i i i的所有邻居节点的第 l l l层节点表示,

RGCN模型

定义了在一个关系多图的传播模型,图中节点 v i v_i vi的更新方式如下:

N i r N_i^{r} Nir表示节点 i i i的关系为 r r r的邻居节点集合
c i , r c_{i,r} ci,r是一个正则化常量,其中 c i , r c_{i,r} ci,r的取值为 ∣ N i ∣ |N_i^| Ni
W r ( l ) W_r^{(l)} Wr(l)是线性转化函数,将同类型边的邻居节点,使用用一个参数矩阵 W r ( l ) W_r^{(l)} Wr(l)进行转化。


通过这幅图可以看清,对于中心红色的节点进行一次卷积,通过聚合邻居节点的信息来更新自身节点的表示。其中邻居节点的聚合是按照边的类型进行分类,根据边类型的不同进行相应的转换,收集的信息经过一个正则化的加和(绿色方块),最后通过激活函数(relu)。其中每个顶点的信息更新共享参数,并行计算,同时也包括自连接,也就是说包括了节点自身表示。

正则化

如果网络中存在大量不同类型的edge,则我们最终需要为每一种edge的类型都生成一个linear层,这样做一方面会导致模型参数量的线性增长,一方面对于某些类型的edge其出现的次数可能很少,这就会导致在每个epoch里,这种类型的edge对应的linear layer最终只在很少的节点上不断更新,从而产生过拟合少量节点的问题。文中对此提出了两种独立的方法对R-GCN层进行规则化:基函数分解和块对角分解。其实本质上就是做局部参数的共享,类似于多任务学习中的share button结构。

基数分解法
基数分解法对于 的定义如下:

从公式可以看出,对于不同类型的关系 r r r,其参数矩阵 W r ( l ) W_r^{(l)} Wr(l)是来自 V b ( l ) ∈ R d ( l + 1 ) × d ( l ) V_b^{(l)} \in R^{d^{(l+1)}\times d^{(l)}} Vb(l)Rd(l+1)×d(l)和系数 a r b ( l ) a_{rb}^{(l)} arb(l)的线性组合.因此只有系数 a r b ( l ) a_{rb}^{(l)} arb(l)和关系类型 r r r相关。同时对于所有的 V b ( l ) V_b^{(l)} Vb(l)也就实现了不同关系类型之间的有效权重共享。还有一点好处是可以减轻稀有关系(rare relations)数据的过拟合问题。是因为稀疏关系矩阵是由 V b ( l ) V_b^{(l)} Vb(l)共享参数组成 。( V b ( l ) V_b^{(l)} Vb(l)可以由频繁关系的数据进行很好的训练)

块对角分解
块对角分解的公式如下:

从公式可以看出每一个 W r ( l ) W_r^{(l)} Wr(l)定义为低维矩阵的直接求和 d i a g ( Q 1 r ( l ) . . . Q B r ( l ) ) diag(Q^{(l)}_{1r}...Q^{(l)}_{Br}) diag(Q1r(l)...QBr(l))其中 W r ( l ) W_r^{(l)} Wr(l)为块对角矩阵。块分解可以看作是每个关系类型的权重矩阵上的稀疏性约束。两种分解都减少了拟合多关系数据所需的参数数量。同时,期望可以减轻对稀有关系的过度拟合,因为参数的更新在稀有关系和频繁关系之间是共享的。

实验

对于节点分类任务:

实验使用的数据集如下,其中包括边,边的类型,标签,分类等信息。

实体分类实验结果:R-GCN 中选择每层有 16 个隐藏单元,并且使用基函数分解的正则化方法的两层模型。

对于链路预测任务:


链路预测实验结果:对于 FB15K 和 Wn18,使用具有两个基函数的基分解和具有 200 维嵌入的单个编码层来报告结果。对于 FB15K-237,发现块对角分解表现最好,使用两层块尺寸为 5×5 和 500 维嵌入。

模型部分

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn.conv import MessagePassing

from utils import uniform

class RGCN(torch.nn.Module):
    def __init__(self, num_entities, num_relations, num_bases, dropout):
        super(RGCN, self).__init__()

        self.entity_embedding = nn.Embedding(num_entities, 100) # 初始化entity
        self.relation_embedding = nn.Parameter(torch.Tensor(num_relations, 100))

        nn.init.xavier_uniform_(self.relation_embedding, gain=nn.init.calculate_gain('relu'))

        self.conv1 = RGCNConv(
            100, 100, num_relations * 2, num_bases=num_bases)
        self.conv2 = RGCNConv(
            100, 100, num_relations * 2, num_bases=num_bases)

        self.dropout_ratio = dropout

    def forward(self, entity, edge_index, edge_type, edge_norm):
        x = self.entity_embedding(entity)
        x = F.relu(self.conv1(x, edge_index, edge_type, edge_norm))
        x = F.dropout(x, p = self.dropout_ratio, training = self.training)
        x = self.conv2(x, edge_index, edge_type, edge_norm)
        
        return x

    def distmult(self, embedding, triplets):
        s = embedding[triplets[:,0]]
        r = self.relation_embedding[triplets[:,1]]
        o = embedding[triplets[:,2]]
        score = torch.sum(s * r * o, dim=1)
        
        return score

    def score_loss(self, embedding, triplets, target):
        score = self.distmult(embedding, triplets)

        return F.binary_cross_entropy_with_logits(score, target)

    def reg_loss(self, embedding):
        return torch.mean(embedding.pow(2)) + torch.mean(self.relation_embedding.pow(2))

class RGCNConv(MessagePassing):
    r"""The relational graph convolutional operator from the `"Modeling
    Relational Data with Graph Convolutional Networks"
    <https://arxiv.org/abs/1703.06103>`_ paper

    .. math::
        \mathbf{x}^{\prime}_i = \mathbf{\Theta}_{\textrm{root}} \cdot
        \mathbf{x}_i + \sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_r(i)}
        \frac{1}{|\mathcal{N}_r(i)|} \mathbf{\Theta}_r \cdot \mathbf{x}_j,

    where :math:`\mathcal{R}` denotes the set of relations, *i.e.* edge types.
    Edge type needs to be a one-dimensional :obj:`torch.long` tensor which
    stores a relation identifier
    :math:`\in \{ 0, \ldots, |\mathcal{R}| - 1\}` for each edge.

    Args:
        in_channels (int): Size of each input sample.
        out_channels (int): Size of each output sample.
        num_relations (int): Number of relations.
        num_bases (int): Number of bases used for basis-decomposition.
        root_weight (bool, optional): If set to :obj:`False`, the layer will
            not add transformed root node features to the output.
            (default: :obj:`True`)
        bias (bool, optional): If set to :obj:`False`, the layer will not learn
            an additive bias. (default: :obj:`True`)
        **kwargs (optional): Additional arguments of
            :class:`torch_geometric.nn.conv.MessagePassing`.
    """

    def __init__(self, in_channels, out_channels, num_relations, num_bases,
                 root_weight=True, bias=True, **kwargs):
        super(RGCNConv, self).__init__(aggr='mean', **kwargs)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_relations = num_relations
        self.num_bases = num_bases

        self.basis = nn.Parameter(torch.Tensor(num_bases, in_channels, out_channels))
        self.att = nn.Parameter(torch.Tensor(num_relations, num_bases))

        if root_weight:
            self.root = nn.Parameter(torch.Tensor(in_channels, out_channels))# 自身节点训练参数
        else:
            self.register_parameter('root', None)

        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)

        self.reset_parameters()

    def reset_parameters(self):
        size = self.num_bases * self.in_channels
        uniform(size, self.basis)
        uniform(size, self.att)
        uniform(size, self.root)
        uniform(size, self.bias)


    def forward(self, x, edge_index, edge_type, edge_norm=None, size=None):
        """"""
        return self.propagate(edge_index, size=size, x=x, edge_type=edge_type,
                              edge_norm=edge_norm)


    def message(self, x_j, edge_index_j, edge_type, edge_norm):
        w = torch.matmul(self.att, self.basis.view(self.num_bases, -1))

        # If no node features are given, we implement a simple embedding
        # loopkup based on the target node index and its edge type.
        if x_j is None:
            w = w.view(-1, self.out_channels)
            index = edge_type * self.in_channels + edge_index_j
            out = torch.index_select(w, 0, index)
        else:
            w = w.view(self.num_relations, self.in_channels, self.out_channels)
            w = torch.index_select(w, 0, edge_type) # 不同的边有不同的权重
            out = torch.bmm(x_j.unsqueeze(1), w).squeeze(-2)

        return out if edge_norm is None else out * edge_norm.view(-1, 1)

    def update(self, aggr_out, x):
        if self.root is not None:
            if x is None:
                out = aggr_out + self.root
            else:
                out = aggr_out + torch.matmul(x, self.root)

        if self.bias is not None:
            out = out + self.bias
        return out

    def __repr__(self):
        return '{}({}, {}, num_relations={})'.format(
            self.__class__.__name__, self.in_channels, self.out_channels,
            self.num_relations)
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值