按照本人的学习历程来看,基本分为以下几个节点:
1.对代码应用不够熟练,或者说C都还没学好的状态,专心攻克软件语法和内部运行机制,一种方式是:看书,看视频(专攻一个语言,我当时是C++方向),一种方式是:下载开源的源码,理解代码的功能,再看代码的实现方式,再模仿写。目的都在于快速的收集各种实用功能代码,增长基本工。
2.编程能力ok之后,进入机器视觉的硬件系统学习,去实地的观察硬件的组成,相互配合,出现问题的解决方式,这个时间的事情琐碎且不高大上,需要真心的爱好的人才能坚持,当年调设备的时候,经常半夜3点到公司解决问题,可能就是换一根网线就可以解决的问题,需要亲自到场定位问题点,培养思维,把硬件的参数,厂家,对应的SDK的应用烂熟于心。
3.进入视觉开发入门阶段,学习图像的相关知识,对halcon的所有算子知道大概的意思,无论通过什么方式,都要熟练的应用一个视觉软件,此时你不需要去深入研究算法的内部公式转化,先以能解决问题为主,也可以大大的提高自己的自信心和学习兴趣,这个过程很美好。
4.深入具体的项目,从头到尾一丝不放过的参与主导一个项目,这里会出现各种各样的问题,千奇百怪,可能都不难,但是把这些问题解决之后,除了对视觉算法有一个全盘的了解对项目周边也有一个基础的解决能力,视觉很多时候是搭载着机械自动化的,那和运动控制的配合,和电气的配合,和机械设计的配合都很重要。
5.大型项目的主控开发,现在进入此阶段之后,代码和算法都是可以解决的,很多时候是多方开发遇到问题点的定位问题,多方都会验证自己没有问题,此时你确要全盘掌控,每个方面都熟悉一点,才能发现是哪里出现了Bug,这个时候需要很强的综合实力,而视觉或者软件变成项目的一部分。
机器视觉学习经历的几个阶段
最新推荐文章于 2024-09-13 13:25:44 发布