数仓分层ods,dwd,dws,ads详细介绍

数据仓库分层是重要概念,常见分为ODS、DWD、DWS和ADS四层。ODS接收存储数据源数据并简单处理;DWD对ODS数据深度加工构建业务模型;DWS提供数据接口和服务;ADS为决策分析提供支持。合理分层可提升数据仓库各方面性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据仓库分层是数据仓库建设的一个重要概念,主要是基于数据处理和管理的需求,将数据仓库划分为不同的层级,在每个层级中进行不同的数据处理和管理活动。常见的数据仓库分层包括ODS、DWD、DWS和ADS四个层次。

ODS(Operational Data Store)操作型数据存储层:ODS层是数据仓库的第一层,主要用来接收和存储数据源系统中的数据,同时保证数据的准确性和完整性。ODS层对数据进行简单的清洗、去重、格式转换等操作,为后续的数据处理提供基础数据。

DWD(Data Warehouse Detail)数据仓库明细层:DWD层是数据处理的核心层,其主要任务是将ODS层中的数据进行清洗、加工、集成、聚合等操作,构建出符合业务需求的数据模型。DWD层主要关注业务模型的建立,为后续决策层提供精细化数据支持。

DWS(Data Warehouse Service)数据仓库服务层:DWS层是面向业务应用的数据访问层,主要用于提供数据接口和数据服务。DWS层可以提供各种类型的服务,如数据查询、统计、报表、分析等,同时可以通过ETL操作等方式对数据进行加工和处理,为用户提供实时数据服务。

ADS(Analytics Data Store)分析型数据存储层:ADS层主要是为决策分析层提供数据支持,主要用于存储汇总计算结果和预处理的数据。ADS层主要关注数据的可视化和查询性能,同时还需要具备快速响应的能力,为业务决策提供及时支持。

数据仓库的分层架构是建设一个高效、灵活、可扩展的数据仓库的必要手段,通过合理的分层,可以提高数据仓库的管理和维护效率,提高数据的处理速度和质量,同时保证数据的安全性和可靠性。

### 数据仓库 DWS 层的设计与作用 #### 1. DWS 层的作用 DWS(Data Warehouse Summary)层作为数据仓库中的汇总层,起到了承上启下的重要作用。这一层次的主要目的是通过预计算和聚合操作减少重复的据处理工作,提高据分析效率。具体而言: - **提升查询性能**:通过对常用维度和事实表进行预先聚合,减少了临时查询时所需的复杂计算量,从而显著提升了查询速度[^1]。 - **简化据访问**:为业务用户提供更易于理解和使用的视图结构,使得用户无需深入了解底层复杂的ETL流程即可快速获取所需信息。 - **增强据一致性**:确保不同应用场景下所使用的统计据遵循统一标准,避免因多源异构而导致的结果差异。 #### 2. DWS 层的设计原则 为了实现上述目标,在设计DWS层时应遵循以下几个重要原则: - **高覆盖率**:构建的据模型应当尽可能全面地支持ADS层的各种应用需求,即任何来自高层的应用都能够在此找到相应的基础据支撑而不必回溯到更低级别的存储中去寻找额外的信息[^2]。 - **高度复用性**:创建具有广泛适用性的公共组件或模块,这些组件可以被多个不同的报表或其他分析工具共享调用,以此来降低开发成本并加快项目交付周期。 - **低穿透率**:努力使大部分的请求都能在本层得到满足,尽量减少对原始明细据(如ODS/DWD)的直接依赖程度。当发现存在频繁向下钻取的情况时,则表明当前的抽象级别可能不够理想,需进一步优化调整。 - **基于指标体系**:依据既定的统计口径定义一系列核心KPI及其衍生变量,并围绕它们展开具体的物理表设计过程。这有助于保持整个系统的逻辑连贯性和可解释性强的特点[^3]。 ```sql -- 示例 SQL 查询展示如何从 DWS 表中提取已聚合好的销售业绩概览 SELECT product_category, SUM(sales_amount), AVG(order_quantity) FROM dws_sales_summary_by_product GROUP BY product_category; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值