
一.概念描述
现代数学:在欧几里得几何学中,直线是几何学中的基本概念,是点在空间内沿相同或相反方向运动的轨迹。或者定义为:曲率最小的曲线(以无限长为半径的圆弧)。
射线亦称为半直线,是几何学的重要概念之一,指直线上任一点一旁的部分。这一点称为射线的端点。射线也可以定义为:从某一个确定的点出发,沿固定方向运动的点的轨迹。
线段是最基本的几何图形之一,界于两点间的直线部分称为线段这两点称为线段的端点。
初中数学对于直线、射线和线段的学习,也没有给出严格的定义,只是作为基本事实重点研究它们的特点。
小学数学:小学数学教材中没有对直线、射线和线段给出明确的定义,而是借助具体生活实例直观引导认识直线、射线和线段的特点。如2004年人教版教材四年级上册的第35页是这样描述射线的:像手电筒、汽车灯和太阳等射出来的光线,都可以近似地看成是射线。
二.概念解读
射线和线段的定义是在直线的基础上给出定义的,但直线涉及无限的概念,与长方体、正方体、长方形、正方形等相比,在现实中没有实物原型,这就需要通过想象逐步抽象、加深对直线的认识。相对于直线而言,射线虽然也涉及了无限的概念,但能够在生活中找到实物原型,如手电简照射出的光,因此认识要相对容易些。线段的认识要更容易一些,因为现实生活中有“线段”的实物原型,并且它是有限的、可测量的。
直线的特征:一是“直”的;二是可以向两方无限延伸;三是没有粗细之分。直线的表示方法一般有两种:如图1,记作直线L;如图2,记作直线AB或直线BA。

图1 图2
直线上的一点和它旁边的部分叫作射线,这个点叫作射线的端点。我们知道射线只有一个端点和一个方向,因此它也是不可度量的。在记录射线时,通常用射线上的端点和射线上任意一点来表示。如图3中的射线记作射线OA或射线L。
在记录射线时,要注意端点的顺序必须正确,比如射线OA不能表示成射线AO。同一条射线就是指射线的端点相同,而且延伸的方向也相同的射线。如图4,射线OA与射线OB表示同一条射线。两条端点相同、方向不同的射线,则是两条不同的射线。

图3 图4
线段由于有两个端点,所以它的长度是有限的,可以测量的。而且在所有连接两点的线中,线段最短,即两点问的线段最短。线段也可以用表示它两个端点的字母或一个小写字母来表示,有时这些字母也表示线段长度。如图5记作线段AB或线段BA---注意线段AB和线段BA是同一条线段。如图6记作线段a。

图5 图6
三.教学建议
小学阶段对于直线、射线和线段的学习,大多数教材都安排在一起,且基本都放在第二学段学习。但也有例外,如人教版教材是在二年级认识线段,在四年级把直线、射线与角的认识放在一起学习。虽然教材的编排顺序略有不同,但对于直线、射线和线段的学习,所有教材都是让学生在观察、对比中认识它们。因此,在教学中教师要注意以下几点。
(1)在具体的生活情境中认识线段、射线和直线
由于在现实中根本找不到“直线”的实物原型,射线和直线都涉及了无限的概念,所以在教学中,教师要结合具体的实例,并引导学生通过想象,认识直线和射线。对于线段的认识,由于现实生中有大量的实物原型,所以认识要容易一些,教师也可以在学生认识线段的
基础上,借助线段,通过想象进一步认识直线和射线。
如学生在认识线段后,教师拿出一个手电筒并打开它,让学生们随着手电简射出来的光束看,并引导说:“如果这束光线没有被阻挡,它将会怎样?”接着说:“在数学上也有这样的现象。想象一下,如果以一条线段的一个端点为端点,另一头无限延伸,会是怎样的一个图形呢?”
(2)在寻找直线、射线和线段间的区别与联系中进一步认识它们
教学中,教师要引导学生在不同中找相同、在相同中找不同,从而得到一些基本事实。基本事实是人们在长期实践中总结出来的结论。
(3)要在活动中初步感受直线、射线和线段的基本性质
对于直线、射线和线段的基本性质,教学中教师可以安排一些有意思的活动,让学生在活动中直观感受它们的性质。
例如,在学生认识直线、射线和线段后,我们可以尝试安排这样的活动:
① 用一个图钉把一张硬纸条钉在木板上,硬纸条可以转动吗?
② 用两个图钉把一张硬纸条钉在小板上,硬纸条可以转动吗?
通过这样的活动,引发学生的思考:过一点可以画出多少条直线?过两点可以画出多少条直线?在具体的活动中,帮助学生认识到:过一点能画无数条直线,过两点只能画一条直线。
四.推荐阅读
《数学辞海·第一卷》(裘光明,山西教育出版社,2002)
该书第118-120页从平面几何的角度对直线、射线、线段做了详细的解读。