已知一个点b,一个向量a,求点b 在a上面的投影点p。
因为p 是a上面的一个点,所以存在p = a*k。(k是一个数)。
根据上面的公式,可以推到空间中点到一个射线上的距离。
已知 开始点a,结束点b,空间中的点c,求距离点p。
那么我们可以定义 A = b - a,B = c - a,E = c - p。根据垂直向量的点击等于0的定律,可以推到出:
因为向量A是列矩阵,所以用变成行矩阵,这样才能相乘就是一个数。
推动出:
=>
=>
=>
=>
现在把k 带入p = A * k
=>
=>
可以看出是个矩阵,是个数。
这个p点是相对于a的点,但是a,b,c 是相对于原点的点。所以需要转换一下。
p = a + ||p|| * normalize(A)。这样就把p 变成了相对于原点的点了
这样我么就求出了p 点,那c 到p 的距离就是c 到线ba的距离
E = c - p。
S = ||E||