U3d 空间中一个点到一个线上的距离

已知一个点b,一个向量a,求点b 在a上面的投影点p。

因为p 是a上面的一个点,所以存在p = a*k。(k是一个数)。

根据上面的公式,可以推到空间中点到一个射线上的距离。

已知 开始点a,结束点b,空间中的点c,求距离点p。

那么我们可以定义 A = b - a,B = c - a,E = c - p。根据垂直向量的点击等于0的定律,可以推到出:

\large A^T*E = 0

因为向量A是列矩阵,所以用\large A^{T}变成行矩阵,这样才能相乘就是一个数。

\large A^{T}*(c - p) = 0

推动出:

=> \large A^{T}*(c - A*k) = 0

=> \large A^{T} *c - A^{T}*A*k = 0

=> \large A^{T}*A*k = A^{T}*c

=>\large k = A^{T}*c / A^{T} * A

现在把k 带入p = A * k

=>\large p = A*(A^{T}*c/A^{T}*A)

=>\large p = (A*A^{T}/A^{T}*A) *c

可以看出\large A*A^{T}是个矩阵,\large A^{T} *A是个数。

这个p点是相对于a的点,但是a,b,c 是相对于原点的点。所以需要转换一下。

p = a + ||p|| * normalize(A)。这样就把p 变成了相对于原点的点了

 

这样我么就求出了p 点,那c 到p 的距离就是c 到线ba的距离

E = c - p。

S = ||E||

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值