stata-描述性统计分析和回归指令


前文中提到如何将xls格式的数据读入stata并且将其转换为dta格式的数据,
向stata中加载数据并且转换为dta格式之后读取

1、简单描述性统计分析

在读入数据之后,我们在进行回归模型构建之前,往往需要对数据进行描述性统计分析,描述性统计分析的具体方法如下,示例使用的方法是summarize,也有其他的一些方法可以参考,它们输出的描述性统计的指标类型各不相同:

summarize coding tc ti_len ab_len au_num de_len if_oa py py2 if_fu nr pg country_len school_len if2

summarize后面的部分显示的就是各个变量名,分别对这些变量进行描述性统计分析
结果:
在这里插入图片描述
通过描述性统计分析,我们可以初步查看发现数据的基本特征,以及是否有异常值,以便更好地处理数据以拟合之后的模型。

2、bootstrap统计量-有置信区间

bootstrap抽样得到的统计量和相关置信区间,是很多高级期刊在论文图表中重点表现的内容,常常以误差棒的形式体现。
在Stata中实现的方式也较为简单,如下:

bootstrap: mean citation   #得到citation的均值的抽样分布

输出结果中同时显示出95%的置信区间:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值