效用函数推导需求函数_微观经济学(4) 消费者理论: 效用最大化、需求

c669d579a831f956f519567ae459419d.png

一、效用最大化问题、需求存在性条件

1.1 Def 预算约束、"偏好最大化"需求

上存在偏好
. 消费者的收入限制为
, 面对的价格
.

(1) Budget Bundle(预算约束):

(2)
, 称为
给定
"偏好最大化"需求/马歇尔需求(Marshallian Demand), 简称 需求.
注意, 此时
为集值函数(Correspondence).

1.2 Def-Prop 效用最大化问题(UMP)

上可被效用函数
表示,
称为
Utility Maximization Problem.
, 即"偏好最大化"等价转化为
效用最大化.
证: 由效用
表示偏好
的定义可知:

1.3 Prop 需求集值函数: 零阶齐次

为零次齐次函数:

证: 显然由于
是零次齐次的,根本没有改变UMP.

1.4 Prop 需求存在条件: 连续偏好(Weierstrass Theorem)

上连续. 则存在连续效用函数
表示
.

首先证明
紧性
(1) 显然
有界, 因为
no goods is free;

(2)
闭集: 任取
. 由于
利用欧氏空间点列极限保号性:
.
Weierstrass Theorem:
由于
上连续,给定
,
上连续. 由于
为紧集, 则有最值定理知: 存在
,即最优值存在且为单点, 最值集必然闭. 则再由
的连续性,其逆像
也为闭集. 又由于紧集闭子集也紧,则利用
的紧性可知
也为紧集.

关于连续函数与紧集的性质参考数学分析相关部分:
全能菜王李金夕:4.4 连续函数的性质:紧、一致连续、连通、逆​zhuanlan.zhihu.com
285fe81c3d5d6ff8d61290f1423611f0.png
更强的性质可由
给出:
全能菜王李金夕:Hemicontinuity of Correspondence 对应的连续性​zhuanlan.zhihu.com
ae978a6a64ad2d34fdb9c1d68aa7c14a.png

二、效用最大化问题求解:必要条件、预算等式(NLS)、边际替代率(NLS、Inner Solution)

2.1 Thm UMP一般解必要条件:KKT 条件

此处,我们对UMP做出进一步限制: 要求
为连续可微.

列出拉格朗日:
.

则必满足KKT一阶条件, 即:
(1)
;

( FOC) (2)
.

( Complementary Slackness) (3)

( Original Conditions and Nonnegative Lagrangians)
详见:
全能菜王李金夕:最优化几何杂谈:Kuhn-Tucker定理、包络定理​zhuanlan.zhihu.com
d44b3a8d2cb1c542f7085fe76ab325b5.png

2.2 Prop "局部非餍足"的"连续"偏好: 需求必在预算线上(Walras' Law)

连续局部非餍足. 则
.

证: (反证法) 若
. 则记
. 考察平面
到点
的距离为
. 则记
,
到平面的距离为
. 则
.

显然由于局部非餍足
矛盾!

2.3 Def-Corollary UMP: "局部非餍足"偏好的"内点解"的必要条件

, 则称其为
内点解(Interior Solution相对于角解corner solution).
此时由松弛互补性,
.

再由局部非餍足偏好:
, 再由松弛互补性,
.

综上所述: 对于局部非餍足偏好的UMP内点解,即当
时, 必有:

(1)
(因为此时由内点解
)

(2)
.

3.3 Prop-Def 内点解: 边际替代率

商品 j 对商品 i 的边际替代率(Marginal Rate of Substitution of Good j for Good i):
. 则由3.3 (1)所述, 向量
平行,即

正是以商品
为计价单位计价的商品
的相对价格.
注意此结论仅限内点解.

三、效用最大化问题求解:充分条件

3.1 Prop 凸、严格凸的连续偏好(严格、拟凹效用函数): 需求为凸集、需求为单点

为连续、凸偏好, 则
为凸集. 设
为连续、严格凸偏好, 则
从集值函数退化成函数(单点).

证: 由上一节知: 连续偏好一定有连续效用函数表示;有效用函数表示的(严格)凸偏好其 效用函数一定为(严格)拟凹函数. 而 拟凹函数的最值集一定为凸集,详细证明见此文章:
全能菜王李金夕:最优化: Introduction of Quasi-Concavity & Convexity​zhuanlan.zhihu.com
d50064dd38ee2c8ba7f721b7af24fd04.png

3.2 Thm UMP"局部非餍足""内点解"的充分条件:拟凹效用函数

为连续函数. 设
.

在点
处可微且
满足3.4 中的 KKT条件,即:

(1)

(2)

(3)
.

还为
拟凹函数(Quasiconcave), 则
参数下 UMP的全局解
.
证: (反证法)
. 则取
. 显然此时
. 可行性是由
的连续性保证: 考虑
的单变量函数
. 由于
为连续函数,
也为连续函数,则其复合函数
也为连续函数. 则由函数极限保号性:

则此时有
. 有
点的可微性,计算

而由拟凹函数的一阶充要条件知:
, 矛盾!拟凹函数性质详情参见
全能菜王李金夕:最优化: Introduction of Quasi-Concavity & Convexity​zhuanlan.zhihu.com
d50064dd38ee2c8ba7f721b7af24fd04.png

四、间接效用函数、影子价格、罗伊恒等式

4.1 Def 间接效用函数

称UMP问题的最值函数
为间接效用函数(Indirect Utility Function).
即 消费者面对
预算约束下可得到的最高效用.

4.2 Prop 间接效用函数性质

连续效用函数
表示在
上的
局部非餍足偏好
. 则其UMP的
满足:

(1) Strictly increase in
; Decrease in
.

(2) Homogeneity of Degree 0:

(3) Quasiconvex in

(4) Continuous in
.

证:
(1) 取
. 由局部非餍足性得到 Walars' Law,

即由于
虽在
feasible,但
并未被取出作为需求.

同理, 取
. 由局部非餍足性得到 Walars' Law,
即由于
虽在
feasible,但
并未被取出作为需求.

(2) 由于预算约束
为零阶齐次,则显然成立.

(3) 由拟凸函数等价条件: 下等值集为凸集,只需证:
均为凸集. 取
.
.

矛盾!则WLOG设

(4)
的连续性由Berge's Maximum Theorem 给出, 略.

4.3 Thm 收入影子价格: Marginal Utility of Income

设对于UMP问题的需求(解)
退化为函数(不再是集值函数).

可微.

. 则UMP的拉格朗日乘数解即为预算约束条件的影子价格

证: 方法一: 包络定理:显然

方法二:由最值函数定义:
等式两边求
的偏导:
. 由前述性质,内点解满足
, 则
.

考察
两边对
求偏导,
, 代回即可.

4.4 Thm Roy's Identity: 由间接效用函数还原需求


证: 利用包络定理易知:
. 再结合4.3影子价格可证.

下一节我们讨论EMP与希克斯需求.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值