
一、效用最大化问题、需求存在性条件
1.1 Def 预算约束、"偏好最大化"需求
设上存在偏好
. 消费者的收入限制为
, 面对的价格
.
(1) Budget Bundle(预算约束):![]()
(2)给定, 称为
"偏好最大化"需求/马歇尔需求(Marshallian Demand), 简称 需求.的
注意, 此时为集值函数(Correspondence).
1.2 Def-Prop 效用最大化问题(UMP)
设在
上可被效用函数
表示,
Utility Maximization Problem.称为
则效用最大化., 即"偏好最大化"等价转化为
证: 由效用表示偏好
的定义可知:
![]()
1.3 Prop 需求集值函数: 零阶齐次
为零次齐次函数:
![]()
证: 显然由于是零次齐次的,根本没有改变UMP.
1.4 Prop 需求存在条件: 连续偏好(Weierstrass Theorem)
设全能菜王李金夕:4.4 连续函数的性质:紧、一致连续、连通、逆zhuanlan.zhihu.com在
上连续. 则存在连续效用函数
表示
.
首先证明紧性:的
(1) 显然有界, 因为![]()
no goods is free;
(2)闭集: 任取为
. 由于
利用欧氏空间点列极限保号性:
Weierstrass Theorem:.
由于在
上连续,给定
,
在
上连续. 由于
为紧集, 则有最值定理知: 存在
,即最优值存在且为单点, 最值集必然闭. 则再由
的连续性,其逆像
也为闭集. 又由于紧集闭子集也紧,则利用
的紧性可知
也为紧集.
关于连续函数与紧集的性质参考数学分析相关部分:

更强的性质可由全能菜王李金夕:Hemicontinuity of Correspondence 对应的连续性zhuanlan.zhihu.com给出:

二、效用最大化问题求解:必要条件、预算等式(NLS)、边际替代率(NLS、Inner Solution)
2.1 Thm UMP一般解必要条件:KKT 条件
此处,我们对UMP做出进一步限制: 要求全能菜王李金夕:最优化几何杂谈:Kuhn-Tucker定理、包络定理zhuanlan.zhihu.com为连续可微.
列出拉格朗日:.
若(1)则必满足KKT一阶条件, 即:
;
( FOC) (2).
( Complementary Slackness) (3)![]()
( Original Conditions and Nonnegative Lagrangians)
详见:

2.2 Prop "局部非餍足"的"连续"偏好: 需求必在预算线上(Walras' Law)
设连续、 局部非餍足. 则为
.
证: (反证法) 若. 则记
. 考察平面
到点
的距离为
. 则记
![]()
,
到平面的距离为
. 则
.
显然由于局部非餍足矛盾!
2.3 Def-Corollary UMP: "局部非餍足"偏好的"内点解"的必要条件
当内点解(Interior Solution相对于角解corner solution)., 则称其为
此时由松弛互补性,.
再由局部非餍足偏好:, 再由松弛互补性,
.
综上所述: 对于局部非餍足偏好的UMP内点解,即当时, 必有:
(1)(因为此时由内点解
)
(2)且
.
3.3 Prop-Def 内点解: 边际替代率
商品 j 对商品 i 的边际替代率(Marginal Rate of Substitution of Good j for Good i):. 则由3.3 (1)所述, 向量
与
平行,即
![]()
而正是以商品
为计价单位计价的商品
注意此结论仅限内点解.的相对价格.
三、效用最大化问题求解:充分条件
3.1 Prop 凸、严格凸的连续偏好(严格、拟凹效用函数): 需求为凸集、需求为单点
设全能菜王李金夕:最优化: Introduction of Quasi-Concavity & Convexityzhuanlan.zhihu.com为连续、凸偏好, 则
为凸集. 设
为连续、严格凸偏好, 则
从集值函数退化成函数(单点).
证: 由上一节知: 连续偏好一定有连续效用函数表示;有效用函数表示的(严格)凸偏好其 效用函数一定为(严格)拟凹函数. 而 拟凹函数的最值集一定为凸集,详细证明见此文章:

3.2 Thm UMP"局部非餍足""内点解"的充分条件:拟凹效用函数
设全能菜王李金夕:最优化: Introduction of Quasi-Concavity & Convexityzhuanlan.zhihu.com为连续函数. 设
.
若在点
处可微且
满足3.4 中的 KKT条件,即:
(1)![]()
(2)![]()
(3)且
.
若拟凹函数(Quasiconcave), 则还为
为
.参数下 UMP的全局解
证: (反证法)
设. 则取
. 显然此时
. 可行性是由
的连续性保证: 考虑
的单变量函数
. 由于
为连续函数,
也为连续函数,则其复合函数
也为连续函数. 则由函数极限保号性:
![]()
则此时有. 有
点的可微性,计算
![]()
而由拟凹函数的一阶充要条件知:, 矛盾!拟凹函数性质详情参见

四、间接效用函数、影子价格、罗伊恒等式
4.1 Def 间接效用函数
称UMP问题的最值函数为间接效用函数(Indirect Utility Function).
即 消费者面对
预算约束下可得到的最高效用.
4.2 Prop 间接效用函数性质
设 连续效用函数表示在
局部非餍足偏好上的
. 则其UMP的
满足:
(1) Strictly increase in; Decrease in
.
(2) Homogeneity of Degree 0:![]()
(3) Quasiconvex in![]()
(4) Continuous in.
证:
(1) 取. 由局部非餍足性得到 Walars' Law,
![]()
即由于虽在
feasible,但
并未被取出作为需求.
同理, 取. 由局部非餍足性得到 Walars' Law,
即由于
虽在
feasible,但
并未被取出作为需求.
(2) 由于预算约束为零阶齐次,则显然成立.
(3) 由拟凸函数等价条件: 下等值集为凸集,只需证:均为凸集. 取
.
![]()
.
![]()
若矛盾!则WLOG设
![]()
(4)的连续性由Berge's Maximum Theorem 给出, 略.
4.3 Thm 收入影子价格: Marginal Utility of Income
设对于UMP问题的需求(解)退化为函数(不再是集值函数).
设可微.
当. 则UMP的拉格朗日乘数解即为预算约束条件的影子价格
![]()
证: 方法一: 包络定理:显然![]()
方法二:由最值函数定义:等式两边求
的偏导:
. 由前述性质,内点解满足
, 则
.
考察两边对
求偏导,
, 代回即可.
4.4 Thm Roy's Identity: 由间接效用函数还原需求
![]()
证: 利用包络定理易知:. 再结合4.3影子价格可证.
下一节我们讨论EMP与希克斯需求.