PyTorch深度学习入门 || 系列(六)——多元分类

0 写在前面

  • 二分类问题是多分类问题的一种特殊情况,区别在于多分类用softmax代替sigmoid函数。
  • softmax函数将所有分类的分数值转化为概率,且各概率的和为1。

1 softmax函数

  • softmax函数首先对所有的输出值通过指数函数,将实数输出映射到正无穷
  • 然后将所有的结果相加作为分母
    在这里插入图片描述

2 数据预处理

  • 首先
  • 下面这段代码可以直接运行!
首先cluster数据,形状为500×2,各元素值为1。然后用normal()函数,以4为均值,2 为标准差生产data0
其他同理
import torch
import matplotlib.pyplot as plt

cluster = torch.ones(500, 2)
data0 = torch.normal(4*cluster, 2)
data1 = torch.normal(-4*cluster, 1)
data2 = torch.normal(-8*cluster, 1)
label0 = torch.zeros(500)
label1 = torch.ones(500)
label2 = 2*label1

x = torch.cat((data0, data1, data2), ).type(torch.FloatTensor)
y = torch.cat((label0, label1, label2), ).type(torch.LongTensor)

plt.scatter(x.numpy()[:, 0], x.numpy()[:, 1], c=y.numpy(), s=10, lw=0, cmap='Accent')
plt.sh
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值