gnn 编码器 传播器 聚合器_PNA | 使用多聚合器聚合图信息结构

作者 | 李梓盟

审稿 | 陈雨洁

今天给大家介绍剑桥大学Pietro Liò团队发表的一项研究工作“Principal Neighbourhood Aggregation for Graph Nets”。作者针对图神经网络(GNNs)的表达力展开研究,将GNN理论框架扩展至连续特征,并从数学上证明了在这种情况下GNN模型对多种聚合函数的需求。基于上述工作,作者还提出主邻域聚合(PNA)网络,将多个聚合器与基于节点度的缩放器相结合, 并通过使用作者新提出的多任务基准以及“encode-process-decode”结构,证明了PNA网络与其他模型相比获得和利用图结构的优越能力。

cfe86ae56401ef2b0657972bb498facb.png1

介绍

近年来GNN在图表示学习方面取得很大进展,但由于缺乏评估GNN表达能力的标准基准和理论框架,新提出的GNN模型并没有评估其网络能否准确表示图的结构特性,其模型的有效性很难得到验证。最近关于各种GNN模型表达能力的研究主要集中在同构任务和可数特征空间上,然而这些研究主要侧重于区分不同的图形拓扑能力上,而在了解它们能否捕获并利用图结构的基本特征上所做的工作很少。

作者认为当前GNN的聚合层其实并不能从单层的节点邻域中提取足够的信息,并在数学上证明了对多种聚合的需求。然后作者提出基于节点度的缩放器的概念,使其能够允许GNN根据每个节点的度放大或衰减信号。结合上述内容,作者设计了主邻域聚合(PNA,Principal Neighbourhood Aggregation)网络,通过将多个聚合器和基于节点度的缩放器结合,使每个节点都能更好地理解其接收到的消息分布,可以有效改善GNN的性能。

作者还针对GNN模型的表达能力的评估问题,创新性地提出使用包含节点级问题和图级问题的多任务基准,这种多任务基准可以很好地适用于GNN,同时它可以确保GNN能够同时理解多种特性。任务间有效地共享参数也表明了其对图的结构特征有更深入的理解。此外,作者

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值