稠密集和疏朗集_拓扑动力系统(2): 极小集, Birkhoff定理, ω极限点

本文介绍了拓扑动力系统中的极小集概念,阐述了极小集的特性,包括其不含真不变闭子集、轨道稠密等,并通过Birkhoff定理探讨了系统的性质。同时,讨论了圆周旋转的例子,以及有理数和无理数的稠密性在动力系统中的应用。
摘要由CSDN通过智能技术生成

cb05bc65320ba5d60e6c84a914671902.png

内容提要:

1 极小集; 2

极限点; 3 关于稠密性的结论补充; 本文主要参考文献.

本文的前置内容为:

格罗卜学数学:拓扑动力系统(1): 基本概念, Li-Yorke定理和Sharkovskii定理

本文之后请继续食用:

格罗卜学数学:拓扑动力系统(4): 拓扑熵

更多内容,请移步专栏目录:

格罗卜:格罗卜的数学乐园-目录​zhuanlan.zhihu.com
80321cf18a0e158676fdf5094197af1d.png

是一个
紧致Hausdorff空间,
连续映射,
上的连续自映射序列
称作
上由连续自映射
经迭代而生成的
紧致拓扑离散半动力系统 , 简称 紧致系统, 记为
.

1 极小集, Birkhoff定理

1-1. [极小集]

是极小集. 如果满足如下等价条件之一:
  • (1)
    不包含任何真不变闭子集;
  • (2)
    ,
    , 即
    中每一点的轨道都在
    中稠密;
  • (3) 对于每个非空开集
    , 存在有限子集
    , 使得
    .
[证明] (1)
(2) 显然.

(1)
(3) 设
. 那么
为闭不变的. 根据假设
. 根据
的紧致性,就有(3)成立.

(3)
(1) 设
为非空闭不变的. 那么
为开集并且
. 如果
, 那么
. 由假设, 存在有限子集
, 使得
. 于是
, 矛盾! 因此
, 证毕.
  • 由定义知道, 极小系统不能有非平凡的子系统. 特别地, 若底空间是无限集合, 则极小系统不能有周期点.

1-2. [极小子集] 如果子系统

是极小的, 则称
的子系统
极小的. 如果一个包含在某个极小集中, 我们就称它为 极小点.

1-3. 如果两个子集

都是极小集, 那么或者
, 或者
.
[证明] 由极小集的等价定义(2), 显然.

1-4. [重要定理]

紧致系统, 并且
第二可数的, 那么
存在极小集.
[证明]
是可数拓扑基. 设
.

对于
如果
, 则令
; 否则令
.

易见
为闭不变的. 设
, 那么
为非空闭不变的. 而且对每个满足
, 有
. 因此
为极小集.

1-5. [回复点] 对于

, 如果存在正整数递增序列
, 使得

则称

的一个
回复点. 以
全体回复点的集合.

1-6. 每个极小点为回复点.

[证明] 根据定义立即看出.

1-7. [Birkhoff定理]

紧致系统, 并且
第二可数的, 那么
.
[证明] 由1-4和1-6.

1-8. [例子: 圆周旋转]

是单位圆周,
是无理数. 定义
那么
是极小系统.
[证明] 对于任意
, 有
.

因为
稠密(在本节末尾证明), 所以
中稠密. 这里
是向下取整符号.

2

极限点

2-1. [

极限点]
. 如果存在正整数递增序列
, 使得
, 则称
的一个
极限点. 以
全体
极限点的集合. 称为
它的
极限集.

2-2.

周期点时, 显然
.
[证明] 显然.

2-3.

.
[证明]
对于任意的
,
,
对于任意的
, 对于任意
的开邻域
,
,
对于任意的
, 对于任意
的开邻域
,
,
对于任意的
, 对于任意
的开邻域
, 存在
, 使得
,
.

2-4.

. 则
的非空闭子集.
[证明] 由于
的紧致性,
的非空子集. 再根据2-3, 知道
是闭的.

[注]

限制在
极限集上的子系统是最重要的子系统.

2-5.

. 则
,
.
[证明] 这可以直接从定义证明.

2-6. [回复点] 对于

, 如果存在正整数递增序列
, 使得
, 则称
的一个
回复点. 以
全体回复点的集合.

2-7.

.则
[证明] 这个命题直接由定义看出.

2-8.

极限点不必为回复点.
[反例] -----xxxxxxxxx---------.

3 关于稠密性的结论补充

3-1. [有理数的稠密性]

, 并且
, 那么存在
, 使得
.
[证明]
, 所以存在
, 使得
,

因此
.

易知存在整数
:
, 从而
.

结合以上讨论, 我们有
, 因此
, 其中
是有理数.

3-2. [无理数的稠密性]

, 并且
, 那么存在
, 使得
.
[证明] 由于
, 所以存在有理数
, 使得
,

如果
, 那么
是无理数.

如果
, 对
重复上述讨论.

3-3. 对任意的

, 任意的
, 存在
, 使得
.
[证明]
即可.

3-4. 对任意的

, 任意的
, 存在
,
, 使得
.
[证明] 考虑
个实数
(
),

由于
, 所以在这
个实数中必有两个数, 其绝对值之差小于
,

不妨设
, 其中
.

,
, 那么
, 并且
.

3-5. 对任意的

, 存在无穷多个有理数
(
), 使得
.
[证明] 反证. 假如只存在有限个(
个)符合条件
(
).

.

取整数
, 并且作整数
(
), 满足
,

那么
,

于是
, 矛盾.

3-6. 对任意的

,
稠密.
[证明] 对于任意的
, 任意的
, 存在
(
), 使得
.记
, 则在
中必有
中的点.

3-7. 对任意的

,
稠密.
[证明] 对任意的
,
稠密. 对于
的取值分三种情况:

(A) 对于任意的
, 任意的
, 不妨设
, 并且
, 存在
, 使得
. 这等价于
, 即
.

这说明
.

(B) 对于
, 对于任意的
, 存在
, 使得
.

这等价于
, 即
.

这说明
.

(C) 对于
, 对于任意的
, 存在
, 使得
.

这等价于
, 即
.

这说明
.

本文主要参考文献:

周作领//尹建东//许绍元: 拓扑动力系统, 出版社:科学出版社, ISBN:9787030325860

拓扑动力系统 (豆瓣)​book.douban.com
a121c607a7dcbd1a69fa780ccc4381e6.png


叶向东/黄文/邵松: 拓扑动力系统概论, 出版社:科学出版社, ISBN:9787030205698

拓扑动力系统概论 (豆瓣)​book.douban.com
65bd92c48d03a4576686250aee594c9c.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值