写一个随机森林插补风力发电功率数据的程序

该程序使用Python的pandas库读取风力发电数据,对含有缺失值的数据集进行处理,用0填充缺失的功率数据。然后,导入sklearn的RandomForestRegressor模型,对未知的风力发电功率进行预测和插补。
摘要由CSDN通过智能技术生成

以下是使用Python编写的随机森林插补风力发电功率数据的程序:

import pandas as pd
from sklearn.ensemble import RandomForestRegressor

# 读取原始数据
data = pd.read_csv('wind_power_data.csv')

# 将缺失值用0替代
data.fillna(0, inplace=True)

# 分离已知和未知数据
known = data[data['power'].notna()]
unknown = data[data['power'].isna()]

# 定义特
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值