对任意的x,y,x²+y²-xy=1成立,则有()。A.x+y<=1 B.x+y>=-2 C.x²+y²<=2 D.x²+y²>=1

文章介绍了如何通过数学变换解决一个涉及x和y的二次方程。首先将等式变形为xy=(x²y²-1)/x,然后引入新变量u=xy,简化为u²-xu-1=0。接着应用二次方程求解公式得到u的值,进一步推导出xy和yx的表达式,并通过这两个表达式相乘得到新的关系式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要使等式x²y²-xy=1成立,我们可以先将其变形为:

xy = (x²y² - 1) / x

然后,如果我们令u = xy,则可以将该等式进一步简化为:

u² - xu - 1 = 0

然后,我们可以使用二次方程的求解公式解出u的值:

u = (x ± sqrt(x² + 4)) / 2

因为u等于xy,所以我们可以得到:

xy = (x ± sqrt(x² + 4)) / 2

由于方程中的变量x和y是对称的,我们可以通过将x和y交换来得到:

yx = (y ± sqrt(y² + 4)) / 2

然后,我们可以将两个方程相乘,得到:

xyyx = (x²y² + xy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值