基于Unity的HTC Vive虚拟现实交互开发(一)环境配置

环境配置

在本篇文章中,我们将重点介绍通过Unity3D来对HTC Vive进行基础的环境配置。
在这个系列的前几篇文章中都是为了之后的开发做准备工作。

HTC Vive

进行VR开发的前提是你要有一套VR硬件设备,这里我们选用HTC Vive Pro专业版,其他版本的HTC Vive系列配置方法类似。

另外,VR对电脑配置的要求很高,要求大致如下:
GPU(图形卡):NVIDIA GeForce® GTX 970 / AMD Radeon™ R9 290 同等或更高配置
CPU(处理器):Intel® i5-4590 / AMD FX 8350 同等或更高配置
RAM(内存):4GB或更多
Video 视频输出:HDMI 1.4或者DisplayPort 1.2或更高版本
USB 端口:1个 USB 2.0或更高版本的端口
操作系统(OS):需要Windows7 64位、Service Pack 1或更新的Windows操作系统
在这里插入图片描述
一套完整的HTC Vive Pro设备包括一个头戴式显示器,两个操控手柄,两个SteamVR定位器以及各种数据线和充电插头。

硬件安装方法可以参考HTC Vive的官网下载Vive设置向导,这里就不再赘述。

Unity

在所有硬件配置完成之后,需要下载Steam和SteamVR应用程序。之后的开发需要用到SteamVR和Unity的SteamVR库。事实上,如果不使用Unity的SteamVR库依然可以开发VR应用程序,但是使用SteamVR库的最大优势是头戴式显示器之间的跨平台兼容性。在之后的部分我们将具体叙述SteamVR插件库中的内容。

现在我们要正式创建一个SteamVR Unity 3D项目。
首先,新建一个Unity3D项目,从Asset Store中下载并安装Steam VR的插件,并打开SteamVR应用。
在这里插入图片描述
点击Import,Unity将开始导入SteamVR资源库。
在这里插入图片描述
Unity的一些默认设置并不适用于SteamVR,该窗口会提示你需要更改的设置以及它们需要被更改成什么样。
根据提示点击Accept All即可自动更改项目设置。
在这里插入图片描述
弹出如下对话框即为导入成功。
在这里插入图片描述
点击OK后,之后会弹出一个对话框(如果没有可以在Window一栏中找到SteamVR Input调出)
在这里插入图片描述
点击Yes,将默认的**“SteamVR Input JSON”**文件以及一些常见的控制器相关绑定文件复制到当前项目的根目录下。
在这里插入图片描述
复制完成后,SteamVR Input窗口将读取文件信息并展示其包含的动作集合以及动作集合下的所有动作。这些操作和绑定提供了一些默认的可以帮助交互系统工作手柄手势,同时还可以自定义添加或删除手柄动作。点击 Save and generate,此时保存了你的操作并且生成了一些类用来初始化这些默认操作,并且可以在编辑器中通过SteamVR API直接访问。

同时,Assets面板中出现了两个新的文件夹:SteamSteamVR_Resources。它们包含了所使用硬件的API、所有的代码、预制体模型以及示例。

在基础装置中,VR摄像机无疑是核心装置。

SteamVR文件夹中找到Prefabs文件夹,在其中找到名为[CameraRig]的预制体,拖动[CameraRig]到Hierarchy面板的空白处,即将VR摄像机的组件添加到场景中。同时删掉原本存在的主摄像机MainCamera,避免与VR摄像机产生冲突。下面我们来简单介绍[CameraRig]中包含的组件。

在这里插入图片描述
[CameraRig]游戏对象本身包含一个名为SteamVR_PlayArea的组件,该组件允许用户在移动的区域进行蓝框绘制。

下面两个子控件Controller (left)Controller (right) 类型相同,并在一定情况下可互相替代。它们在HTC Vive虚拟世界中渲染模型来显示控制器的位置。这两个游戏对象上包含一个SteamVR_Behaviour_Pose组件,用于设置转换的位置和旋转。在它们下面还各有一个叫做Model的GameObjects,它包含了SteamVR_RenderModel组件。它有几个成员包括索引、模型覆盖、着色器、详细、创建组件、动态更新用于渲染模型。

在使用时,硬件装置可以感知控制器是否连接,如果未使用控制器并不会产生任何错误。如果不使用控制器的情况下,Controller游戏对象也不会影响性能。

在之后是Camera组件,这是组成GameObject系统的主要部分。在右侧Inspector面板中点击Add Component添加组件SteamVR_Camera,Camera组件被分为了Camera(eye)Camera(head) 两个控件,同时 Camera(head) 还带有一个名为 Camera(ears) 的子控件。
在这里插入图片描述
Camera(head)包含一个名为SteamVR_TrackedObject的组件,SteamVR_Tracked对象的索引字段设置为头戴式显示器。Camera(head)游戏对象将与头戴式显示器一同移动,SteamVR_TrackedObject组件会确保摄像机装置的顶部位于正确的位置,模拟现实世界中头戴式显示器的位置。

Camera(eye)中我们可以看到实际头戴式显示器中的虚拟世界,它与Camera(head)位置相同,类似于现实世界中头和眼睛的关系,但它拥有用于渲染视图主要部分的Camera组件。它是我们添加依赖于视图的组件的地方(比如标注图像来定位的组件或者LookAt函数),其中它包含了SteamVR_Camera组件,可以用于处理视图并将其发送到SteamVR并渲染呈现给头戴式显示器。

最后是 Camera(ears)游戏对象。它是音频接收的部分,处理场景中的听觉问题并将听到的内容传递给音响系统。它包含了一个SteamVR_Ears的组件,当使用扬声器时,它将匹配到音频监听器。利用OpenVR库中的一个属性来判断是否在使用扬声器。

以上就是全部最基础的环境配置,此时按下Play按钮并带上VR头戴式显示器便可预览场景,将手柄拿到视野中也可以看到手柄的位置。

在这里插入图片描述

<think>好的,我现在需要帮助用户了解如何在Unity中使用HTC Vive Pro Eye收集和分析眼动数据,并生成热力图。首先,我需要仔细分析用户的问题,并回顾提供的引用资料,确保回答准确。 首先,用户提到了HTC Vive Pro Eye和Unity的结合,需要教程式的指导。根据引用[2],有个基于Vive眼动SDK的开发流程,涉及SteamVR、OpenXR和SRanipalRuntime SDK。我应该按照步骤来组织回答,确保每个环节清晰。 第步,环境准备。需要确认用户安装正确的Unity版本,根据引用[3]的链接,可能需要查看Vive开发者网站的具体要求。然后,安装SDK和插件,这里要提到SRanipal SDK和SteamVR插件,引用[2]中提到的三个第三方包可能需要详细说明安装顺序和注意事项。 第二步,场景搭建。需要指导用户设置Vive设备,包括CameraRig和启用眼动追踪模块。这部分可能需要引用[3]中的设置步骤,确保XR插件正确配置,比如使用OpenXR或SteamVR插件。 第三步,数据收集。这里需要编写脚本获取数据,引用[2]提到可以获取3D坐标、2D坐标、注视物体等信息。需要给出代码示例,例如使用SRanipal_Eye_API获取注视信息,并处理数据存储。同时,要提醒用户注意数据更新的频率和坐标系转换的问题。 第四步,数据分析与热力图生成。热力图的生成可能需要将2D坐标数据统计后使用纹理或Shader可视化。可能需要参考引用[2]中的方法,或者建议使用Unity的粒子系统或第三方插件如Heatmap System。这里需要提供代码片段,展示如何将数据转换为热力图,并调整参数如半径和颜色渐变。 然后,测试与优化部分需要提醒用户验证数据准确性,检查设备佩戴是否正确,以及性能优化,比如控制数据存储频率避免卡顿。 最后,相关问题的生成要围绕用户可能的后续疑问,比如优化数据准确性、处理多用户数据、与其他分析工具集成,以及实时可视化方法。 需要确保所有LaTeX格式正确,比如行内公式用$...$,独立公式用$$...$$,但当前内容可能涉及代码和步骤,LaTeX使用较少。不过如果有数学表达式,例如在热力图中使用高斯分布公式,需要正确应用格式。 检查引用标记是否正确添加,例如在提及SDK安装时引用[2]和[3],在数据收集部分引用[2]。同时,确保回答结构清晰,分步骤说明,代码示例正确,并且语言简洁易懂。 最后,验证所有步骤是否基于提供的引用资料,避免引入外部知识,确保回答的准确性和可靠性。如果有不确定的部分,比如热力图的具体实现方式,可能需要更详细地参考引用[2]中的方法或建议查阅官方文档。</think>以下是在Unity中使用HTC Vive Pro Eye进行眼动数据收集、分析和生成热力图的完整教程,基于官方文档和研究实践整理: ### 、环境准备 1. **硬件配置** - HTC Vive Pro Eye头显(需开启眼动追踪功能) - 安装SteamVR 1.2.3+和SRanipal Runtime 1.3.1.0+[^3] 2. **Unity设置** - 创建3D项目(推荐Unity 2019.4 LTS) - 导入以下SDK: * Vive SRanipal SDK(眼动数据接口) * SteamVR插件(设备连接) * OpenXR/SteamVR XR Plugin(XR系统支持)[^2] ```csharp // 包管理器引用示例 dependencies { "com.valve.openvr": "1.2.3", "com.htc.upm.sranipal": "1.3.1" } ``` ### 二、眼动数据收集 1. **场景搭建** - 添加`[CameraRig]`预制体 - 创建眼动数据管理器脚本 2. **核心代码实现** ```csharp using Vive.SR.anipal.Eye; public class EyeDataCollector : MonoBehaviour { void Update() { if (SRanipal_Eye_Framework.Status != SRanipal_Eye_Framework.FrameworkStatus.WORKING) return; EyeData eyeData = new EyeData(); SRanipal_Eye.GetEyeData(ref eyeData); // 获取3D注视点 Vector3 gazeOrigin = eyeData.verbose_data.left.gaze_origin_mm; Vector3 gazeDirection = eyeData.verbose_data.left.gaze_direction_normalized; // 存储数据到CSV SaveToCSV(Time.time, gazeOrigin, gazeDirection); } } ``` ### 三、热力图生成(基于2D屏幕坐标) 1. **坐标转换** ```csharp // 将3D注视点转换为2D屏幕坐标 Vector3 viewportPoint = Camera.main.WorldToViewportPoint(gazeHitPoint); Vector2 screenPos = new Vector2(viewportPoint.x * Screen.width, (1 - viewportPoint.y) * Screen.height); ``` 2. **热力图算法实现** $$ G(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{(x-x_0)^2+(y-y_0)^2}{2\sigma^2}} $$ 使用高斯核密度估计法进行数据插值 3. **Shader可视化** ```shader // 热力图片段着色器 fixed4 frag (v2f i) : SV_Target { float intensity = 0; for(int j=0; j<_HeatPointsCount; j++){ float dist = distance(i.uv, _HeatPoints[j].xy); intensity += exp(-dist * dist / (2 * _Sigma * _Sigma)); } return lerp(_ColdColor, _HotColor, intensity); } ``` ### 四、数据分析流程 1. **数据预处理** - 过滤眨眼数据(通过`eyeData.verbose_data.left.eye_openness`) - 时间戳对齐(使用SteamVR系统时间) 2. **统计维度 - 注视持续时间 - 扫视路径分析 - 兴趣区域(AOI)统计 ### 五、优化建议 1. **精度提升** - 校准前确保用户正确佩戴设备 - 使用SRanipal提供的`EyeDataValidator`进行数据有效性检测[^1] 2. **性能优化** - 设置合理的数据采样率(推荐120Hz) - 使用异步写入方式保存数据
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值