机器学习算法-朴素贝叶斯

对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布,然后基于此模型,对于给定的输入 x x x,利用贝叶斯定理求出后验概率最大的输出 y y y

1. 最小错误率决策(最大后验)

p ( e r r o r ∣ x ) = { p ( w 1 ∣ x ) , d e c i d e   w 2 p ( w 2 ∣ x ) , d e c i d e   w 1 p(error|x)=\left\{\begin{aligned}\\p(w_1|x),decide \ w_2\\{p(w_2|x)},decide \ w_1\end{aligned}\right. p(errorx)={p(w1x),decide w2p(w2x),decide w1
其中 w 1 , 2 w_{1,2} w1,2是类别标签

2. 最小风险决策(贝叶斯决策)

  • 决策代价:将真正的类别 w j w_j wj决策为 α i \alpha_i αi的风险为:
    λ i j = λ ( α i ∣ w j ) \lambda_{ij}=\lambda(\alpha_i|w_j) λij=λ(αiwj)
  • 条件风险
    R ( α i ∣ x ) = ∑ j = 1 c λ ( α i ∣ w j ) p ( x j ∣ x ) R(\alpha_i|x)=\sum_{j=1}^c\lambda(\alpha_i|w_j)p(x_j|x) R(αix)=j=1cλ(αiwj)p(xjx)
  • 全部风险
    R = ∫ R ( α ( x ) ∣ x ) p ( x ) d x R=\int R(\alpha(x)|x)p(x)dx R=R(α(x)x)p(x)dx
  • 最小风险决策(贝叶斯决策)
    arg min ⁡ i R ( α i ∣ x ) \argmin_iR(\alpha_i|x) iargminR(αix)

这里将决策代价 λ i j \lambda_{ij} λij改为0-1损失函数就将贝叶斯决策(最小风险决策)转换为最小错误率决策(最大后验)

3. 朴素贝叶斯分类

朴素贝叶斯法分类时,对给定的输入 x x x,通过学习到的模型计算后验概率分布 P ( Y = c k ∣ X = x ) P(Y=c_k|X=x) P(Y=ckX=x),将后验概率最大的类作为 x x x的类输出。后验概率计算根据贝叶斯定理尽心:
P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) P(Y=c_k|X=x)=\frac{P(X=x|Y=c_k)P(Y=c_k)}{\sum_kP(X=x|Y=c_k)P(Y=c_k)} P(Y=ckX=x)=kP(X=xY=ck)P(Y=ck)P(X=xY=ck)P(Y=ck)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值