数据融合技术——基本/常值增益/平方根/遗忘因子/自适应/限制k/扩大p的卡尔曼滤波

数据融合技术

更多代码可参考以下链接(UKF,EKF,PF,联邦卡尔曼滤波)

https://github.com/Changjing-Liu/Data_Fusion_Course


1 方法概述

卡尔曼滤波本质上是一种最优化方法,它的优化目标是使得被估计量的均方误差最小。卡尔曼滤波主要分为状态预测和测量更新两部分。


1.1 基本卡尔曼滤波

function Xkf=kalman(Xkf,u,Z,H,P0,Q,R,phi,Tau,N)
    %% 基本离散kalman滤波
    for i=2:N
        Xn=phi*Xkf(:,i-1)+Tau*u;%预测
        P1=phi*P0*phi'+Q;%预测误差协方差
        K=P1*H'*(H*P1*H'+R)^(-1);%增益
        Xkf(:,i)=Xn+K*(Z(:,i)-H*Xn);%状态更新
        P0=(eye(2)-K*H)*P1;             %滤波误差协方差更新
    end
end

1.2 常值增益卡尔曼滤波

function Xkf=kalman_gainfix(Xkf,u,Z,H,P0,Q,R,phi,Tau,N)
%% 常值增益kalman滤波
K=[0.5;0.1];
for i=2:N
    Xn=phi*Xkf(:,i-1)+Tau*u;%预测
    P1=phi*P0*phi'+Q;%预测误差协方差
%     K=P1*H'*(H*P1*H'+R)^(-1);%增益
    Xkf(:,i)=Xn+K*(Z(:,i)-H*Xn);%状态更新
    P0=(eye(2)-K*H)*P1;             %滤波误差协方差更新
end

1.3 平方根卡尔曼滤波

function Xkf=kalman_sqrt(Xkf,u,Z,H,P0,Q,R,Phi,Tau,N)
sQ = mychol(Q); sR = mychol(R); Delta0 = mychol(P0);
%% 平方根kalman滤波
    for i=2:N
        %状态更新
        Xn=Phi*Xkf(:,i-1)+Tau*u;%预测
        
        %预测协方差更新
        [~, Delta] = myqr([Phi*Delta0, Tau*sQ]');  %[Phi*Delta0, Tau*sQ]'系统驱动噪声
        Delta = Delta';%delta_k+1/k=U^T上三角阵,这里已经完成了计算
    
        [~, rho] = myqr([H*Delta, sR]'); 
        rho = rho';%相当于
        
        %测量更新
        K=Delta*Delta'*H'*(rho*rho')^(-1);
        Xkf(:,i)=Xn+K*(Z(:,i)-H*Xn);%状态更新
        Delta0 = Delta*(eye(length(Delta0))-Delta'*H'*(rho*rho'+sR*rho')^-1*H*Delta);
    end
end

function [Phi, Tau, H, Q, R, P0] = rndmodel(n, m, l)  % 随机系统模型
    Phi = randn(n);  Tau = randn(n,l);  H = randn(m,n);
    Q = diag(randn(l,1))^2;  R = diag(randn(m,1))^2;
    P0 = randn(n); P0 = P0'*P0;
end

function Delta1 = SRKF(Delta0, Phi, Tau, sQ, H, sR)  % 平方根滤波(核心时不断更新协方差的平方根)
    %Delta0:协方差P的平方根
    %phi:
    %tau:
    %sq:Q平方根
    %H:H测量矩阵
    %sr:R平方根
    %%预测
    [q, Delta] = myqr([Phi*Delta0, Tau*sQ]');  %[Phi*Delta0, Tau*sQ]'系统驱动噪声
    Delta = Delta';%delta_k+1/k=U^T上三角阵,这里已经完成了计算
    
    [q, rho] = myqr([H*Delta, sR]'); 
    rho = rho';%相当于
    Delta1 = Delta*(eye(length(Delta0))-Delta'*H'*(rho*rho'+sR*rho')^-1*H*Delta);
end

function A = mychol(P)  % 乔莱斯基分解,P=A*A', A为上三角阵
    n = length(P);  A = zeros(n);
    for j=n:-1:1
       A(j,j) = sqrt(P(j,j)-A(j,j+1:n)*A(j,j+1:n)');
       for i=(j-1):-1:1
           A(i,j) = (P(i,j)-A(i,j+1:n)*A(j,j+1:n)')/A(j,j);
       end
    end
end

function [Q, R] = myqr(A)  % QR分解,A=Q*R, 其中Q'*Q=I,R为上三角阵
    [m, n] = size(A);
    if n>m,  error('n must not less than m.'); end
    R = zeros(n);
    for i=1:n
       R(i,i) = sqrt(A(:,i)'*A(:,i));
       A(:,i) = A(:,i)/R(i,i);
       j = i+1:n;
       R(i,j) = A(:,i)'*A(:,j);
       A(:,j) = A(:,j)-A(:,i)*R(i,j);
    end
    Q = A;
    
end

1.4 带遗忘因子的卡尔曼滤波

function Xkf=kalman_forgetting_factor(Xkf,u,Z,H,P0,Q,R,phi,Tau,N)
    %% 带遗忘因子的kalman滤波
    lambda=0.5;
    for i=2:N
        Xn=phi*Xkf(:,i-1)+Tau*u;            %预测
        P1=phi*P0*phi'+Q;                   %预测误差协方差
        K=P1*H'*(H*P1*H'+R)^(-1);           %增益
        Xkf(:,i)=Xn+K*(Z(:,i)-H*Xn);        %状态更新
        P0=lambda^(-1)*(eye(2)-K*H)*P1;     %滤波误差协方差更新
    end
end

1.5 自适应卡尔曼滤波

function Xkf=kalman_adaptive(Xkf,u,Z,H,P0,Q,R,phi,Tau,N)
    %% 自适应kalman滤波
    K=[1;0];
    lambda=0.95;%遗忘因子
    for i=2:N
        Xn=phi*Xkf(:,i-1)+Tau*u;    %预测
        P1=phi*P0*phi'+Q;           %预测误差协方差
        dk=(1-lambda)*(1-lambda^(i));
        vk=Z(:,i)-H*Xn;
        R=(1-dk)*R+dk*((eye(1)-H*K)*vk*vk'*(eye(1)-H*K)'+H*P0*H');     %观测误差R基于dk调节      
        K=P1*H'*(H*P1*H'+R)^(-1);   %增益
        Xkf(:,i)=Xn+K*vk;%状态更新
        P0=(eye(2)-K*H)*P1;         %滤波误差协方差更新
    end
end

1.6 限制k减小的卡尔曼滤波

function Xkf=kalman_restrain_K(Xkf,u,Z,H,P0,Q,R,phi,Tau,N)
    %% 限制k的kalman滤波
    K=[0;0];
    for i=2:N
        Xn=phi*Xkf(:,i-1)+Tau*u;%预测
        P1=phi*P0*phi'+Q;%预测误差协方差
        e=Z(:,i)-H*Xn;  %新息
        E=H*P0*H'+R;    %量测估计误差
        r=3;
        if(e'*e>r*trace(E))
           disp("发散");
           %重置k
%            K=[0.5;0.1];
            if(i==2)
                K=P1*H'*(H*P1*H'+R)^(-1);%增益
            end
        else
            K=P1*H'*(H*P1*H'+R)^(-1);%增益
        end
        Xkf(:,i)=Xn+K*(Z(:,i)-H*Xn);%状态更新
        P0=(eye(2)-K*H)*P1;             %滤波误差协方差更新
    end
end

1.7 扩大P的卡尔曼滤波

function Xkf=kalman_Sk(Xkf,u,Z,H,P0,Q,R,phi,Tau,N)
    %% 扩大P(k|k-1)的kalman滤波(Sk法)
    for i=2:N
        Xn=phi*Xkf(:,i-1)+Tau*u;%预测
        e=Z(:,i)-H*Xn;  %新息
        E=H*P0*H'+R;    %量测估计误差
        r=3;
        if(e'*e>r*trace(E))
           disp("发散");
           Sk=trace(e*e'-H*Q*H'-R)/trace(H*phi*P0*phi'*H');
           P1=Sk*phi*P0*phi'+Q;%预测误差协方差
        else
            P1=phi*P0*phi'+Q;%预测误差协方差
        end
        K=P1*H'*(H*P1*H'+R)^(-1);%增益
        Xkf(:,i)=Xn+K*(Z(:,i)-H*Xn);%状态更新
        P0=(eye(2)-K*H)*P1;             %滤波误差协方差更新
    end
end

2 实验

2.1基本与常值增益对比

设一小车匀速直线运动,某处一测距仪每1秒测量到小车的距离,测量误差为零均值的白噪声序列,方差为1。设初始时刻距离的均值为0 m,方差为0.01,速度的均值为2 m/s,方差为0.015。该设小车运行25s,使用基本离散 Kalman 滤波算法和常值增益 Kalman 滤波算法获得小车的距离和速度。
在这里插入图片描述


%% 匀速直线运动
clc;clear;
close all;
T=1;%雷达扫描周期
N=25/T;%总的采样次数
X=zeros(2,N);%目标真实位置、速度
X(:,1)=[0,2];%目标初始位置、速度
S(:,1)=[0,2];
Z=zeros(1,N);%传感器对位置的观测
Z(:,1)=X(1,1);%观测初始化
delta_w=1e-1; %如果增大这个参数,目标真实轨迹就是曲线了

Q=delta_w*diag([2,2]);%过程噪声方差
R=eye(1)*10;%观测噪声均值

phi=[1,T;0,1];%状态转移矩阵
Tau=[T^2/2 0;0,T];
u=[1;1];
W=[1;0];
H=[1,0];%观测矩阵
Xn=zeros(2,0);
Xn_fix=zeros(2,0);

for i=2:N
    S(:,i)=phi*S(:,i-1)+Tau*u;%目标理论轨迹
    X(:,i)=phi*X(:,i-1)+Tau*u+sqrtm(Q)*randn(2,1);%目标真实轨迹
    Z(:,i)=H*X(:,i)+sqrtm(R)*randn(1,1);%对目标的观测
end

% Kalman 滤波
Xkf=zeros(2,N);
Xkf(:,1)=X(:,1);%卡尔曼滤波状态初始化
Xkf_gainfix=Xkf;
P0=100e-2*eye(2);%协方差阵初始化
%% 基本离散kalman滤波
tic;
Xkf=kalman(Xkf,u,Z,H,P0,Q,R,phi,Tau,N);
toc;

%% 固定增益的kalman滤波
tic;
Xkf_gainfix=kalman_gainfix(Xkf_gainfix,u,Z,H,P0,Q,R,phi,Tau,N);
toc;

%误差分析
for i=1:N

    Err_Observation(i)=RMS(X(:,i),Z(:,i));%滤波前的误差
    Err_KalmanFilter(i)=RMS(X(:,i),Xkf(:,i));%滤波后的误差
    Err_fixKalmanFilter(i)=RMS(X(:,i),Xkf_gainfix(:,i));%滤波后的误差
end
mean_Observation=mean(Err_Observation);
mean_KalmanFilter=mean(Err_KalmanFilter);
mean_fixKalmanFilter=mean(Err_fixKalmanFilter);
figure
hold on;box on;
t=(0:1:N-1);
plot(t,S(1,:),'g','LineWidth',1);%理论轨迹
plot(t,X(1,:),'--b','LineWidth',1);%实际轨迹
plot(t,Z(1,:),'-or','LineWidth',1);%观测轨迹
plot(t,Xkf(1,:),':k','LineWidth',2);%卡尔曼滤波轨迹
plot(t,Xkf_gainfix(1,:),'-.m','LineWidth',2);%卡尔曼滤波轨迹
% M=M';
% plot(M(1,:),'k','LineWidth',1);%一步预测轨迹
legend('理论轨迹','实际运动轨迹','观测轨迹','基本滤波后轨迹','固定增益滤波后轨迹');
xlabel('横坐标 T/s');
ylabel('纵坐标 X/m');
 
figure
hold on;box on;
plot(t,Err_Observation,'-');
plot(t,Err_KalmanFilter,'--');
plot(t,Err_fixKalmanFilter,'-.');
% legend('滤波前误差',num2str(mean_Observation),'基本滤波后误差','固定增益滤波后误差');
legend(sprintf('滤波前误差%.03f',mean_Observation),sprintf('基本滤波后误差%.03f',mean_KalmanFilter),sprintf('固定增益滤波后误差%.03f',mean_fixKalmanFilter));
xlabel('观测时间/s');
ylabel('误差值');


% 计算欧氏距离子函数
function dist=RMS(X1,X2)
if length(X2)<=2
    dist=sqrt((X1(1)-X2(1))^2);
else
    dist=sqrt((X1(1)-X2(1))^2);
end
end

2.2 基本卡尔曼滤波与平方根卡尔曼滤波对比

设对象的状态方程为x(k)=0.5x(k-1)+w(k)+4,量测器的方程为z(k)=x(k)+v(k),系统的初始条件为x(0)=5,过程噪声和测量噪声分别是方差为0.1和0.2的白噪声。假设在卡尔曼滤波器中实现的方程为x(k⁄k-1)=0.5x(k-1⁄k-1),即在滤波器的算法中,不考虑等于4的常值偏差。分别采用基本kalman滤波,限制k减小的kalman滤波,带遗忘因子的kalman滤波和扩大P的kalman滤波进行仿真。

在这里插入图片描述

%% 匀速直线运动
clc;clear;
close all;
T=1;%雷达扫描周期
N=25/T;%总的采样次数
X=zeros(2,N);%目标真实位置、速度
X(:,1)=[0,2];%目标初始位置、速度
S(:,1)=[0,2];
Z=zeros(1,N);%传感器对位置的观测
Z(:,1)=X(1,1);%观测初始化
delta_w=1e-2; %如果增大这个参数,目标真实轨迹就是曲线了

Q=delta_w*diag([1,1.5]);%过程噪声方差
R=eye(1);%观测噪声均值

phi=[1000000,T;0,1000000];%状态转移矩阵%%%%%% 此处修改
Tau=[T^2/2,0;0,T];
u=[0;0];
W=[1;0];
H=[1,0];%观测矩阵
Xn=zeros(2,0);
Xn_fix=zeros(2,0);

for i=2:N
    S(:,i)=phi*S(:,i-1)+Tau*u;%目标理论轨迹
    X(:,i)=phi*X(:,i-1)+Tau*u+sqrtm(Q)*randn(2,1);%目标真实轨迹
    Z(:,i)=H*X(:,i)+sqrtm(R)*randn(1,1);%对目标的观测
end

% Kalman 滤波
Xkf=zeros(2,N);
Xkf(:,1)=X(:,1);%卡尔曼滤波状态初始化
Xkf_gainfix=Xkf;
Xkf_sqrt=Xkf;
P0=100e-2*eye(2);%协方差阵初始化
%% 基本离散kalman滤波
Xkf=kalman(Xkf,u,Z,H,P0,Q,R,phi,Tau,N);

%% 固定增益的kalman滤波
% Xkf_gainfix=kalman_gainfix(Xkf_gainfix,u,Z,H,P0,Q,R,phi,Tau,N);

Xkf_sqrt=kalman_sqrt(Xkf_sqrt,u,Z,H,P0,Q,R,phi,Tau,N);

%误差分析
for i=1:N

    Err_Observation(i)=RMS(X(:,i),Z(:,i));%滤波前的误差
    Err_KalmanFilter(i)=RMS(X(:,i),Xkf(:,i));%滤波后的误差
    Err_sqrtKalmanFilter(i)=RMS(X(:,i),Xkf_sqrt(:,i));%滤波后的误差
end
mean_Observation=mean(Err_Observation);
mean_KalmanFilter=mean(Err_KalmanFilter);
mean_fixKalmanFilter=mean(Err_sqrtKalmanFilter);
figure
hold on;box on;
t=(0:1:N-1);
plot(t,S(1,:),'g','LineWidth',1);%理论轨迹
plot(t,X(1,:),'--b','LineWidth',1);%实际轨迹
plot(t,Z(1,:),'-or','LineWidth',1);%观测轨迹
plot(t,Xkf(1,:),':k','LineWidth',2);%卡尔曼滤波轨迹
plot(t,Xkf_sqrt(1,:),'-.m','LineWidth',2);%卡尔曼滤波轨迹
% M=M';
% plot(M(1,:),'k','LineWidth',1);%一步预测轨迹
legend('理论轨迹','实际运动轨迹','观测轨迹','基本滤波后轨迹','平方根滤波后轨迹');
xlabel('横坐标 T/s');
ylabel('纵坐标 X/m');
 
figure
hold on;box on;
plot(t,Err_Observation,'-');
plot(t,Err_KalmanFilter,'--');
plot(t,Err_sqrtKalmanFilter,'-.');
% legend('滤波前误差',num2str(mean_Observation),'基本滤波后误差','固定增益滤波后误差');
legend(sprintf('滤波前误差%.03f',mean_Observation),sprintf('基本滤波后误差%.03f',mean_KalmanFilter),sprintf('平方根滤波后误差%.03f',mean_fixKalmanFilter));
xlabel('观测时间/s');
ylabel('误差值');


% 计算欧氏距离子函数
function dist=RMS(X1,X2)
if length(X2)<=2
    dist=sqrt((X1(1)-X2(1))^2);
else
    dist=sqrt((X1(1)-X2(1))^2);
end
end

2.3 抑制滤波发散


%% 匀速直线运动
clc;clear;
close all;
T=1;%雷达扫描周期
N=50/T;%总的采样次数
X=zeros(2,N);%目标真实位置、速度
X(:,1)=[5,0];%目标初始位置、速度
S(:,1)=[5,0];
Z=zeros(1,N);%传感器对位置的观测
Z(:,1)=X(1,1);%观测初始化
delta_w=1e-2; %如果增大这个参数,目标真实轨迹就是曲线了

Q=delta_w*diag([1,0]);%过程噪声方差
R=eye(1)*0.1;%观测噪声均值

phi=[0.5,0;0,0];%状态转移矩阵
phi_1=[0.5,0;0,0];
Tau=[T^2/2 0;0,T];
u=[8;0];%加速度矩阵
u_1=[0;0];
W=[1;0];
H=[1,0];%观测矩阵
Xn=zeros(2,0);
Xn_fix=zeros(2,0);

for i=2:N
    S(:,i)=phi*S(:,i-1)+Tau*u;%目标理论轨迹
    X(:,i)=phi*X(:,i-1)+Tau*u+sqrtm(Q)*randn(2,1);%目标真实轨迹
    Z(:,i)=H*X(:,i)+sqrtm(R)*randn(1,1);%对目标的观测
end

% Kalman 滤波
Xkf=zeros(2,N);
Xkf(:,1)=X(:,1);%卡尔曼滤波状态初始化
Xkf_rk=Xkf;
Xkf_ff=Xkf;
Xkf_Sk=Xkf;
P0=100e-2*eye(2);%协方差阵初始化
%% 基本离散kalman滤波
Xkf=kalman(Xkf,u_1,Z,H,P0,Q,R,phi,Tau,N);

%% 限制K减小的kalman滤波
Xkf_rk=kalman_restrain_K(Xkf_rk,u_1,Z,H,P0,Q,R,phi,Tau,N);

%% 带遗忘因子的kalman滤波
Xkf_ff=kalman_forgetting_factor(Xkf_ff,u_1,Z,H,P0,Q,R,phi,Tau,N);

%% 扩大P的kalman滤波
Xkf_Sk=kalman_Sk(Xkf_Sk,u_1,Z,H,P0,Q,R,phi,Tau,N);

%误差分析
for i=1:N

    Err_Observation(i)=RMS(X(:,i),Z(:,i));%滤波前的误差
    Err_KalmanFilter(i)=RMS(X(:,i),Xkf(:,i));%滤波后的误差
    Err_rkKalmanFilter(i)=RMS(X(:,i),Xkf_rk(:,i));%滤波后的误差
    Err_ffKalmanFilter(i)=RMS(X(:,i),Xkf_ff(:,i));%滤波后的误差
    Err_adKalmanFilter(i)=RMS(X(:,i),Xkf_Sk(:,i));%滤波后的误差
end
mean_Observation=mean(Err_Observation);
mean_KalmanFilter=mean(Err_KalmanFilter);
mean_fixKalmanFilter=mean(Err_rkKalmanFilter);
mean_ffKalmanFilter=mean(Err_ffKalmanFilter);
mean_adKalmanFilter=mean(Err_adKalmanFilter);

%% 画图
figure
hold on;box on;
t=(0:1:N-1);
plot(t,S(1,:),'-','LineWidth',1);%理论轨迹
plot(t,X(1,:),'--','LineWidth',1);%实际轨迹
plot(t,Z(1,:),'-o','LineWidth',1);%观测轨迹
plot(t,Xkf(1,:),':','LineWidth',2);%卡尔曼滤波轨迹
plot(t,Xkf_rk(1,:),'-.','LineWidth',2);%卡尔曼滤波轨迹
plot(t,Xkf_ff(1,:),'-x','LineWidth',2);%卡尔曼滤波轨迹
plot(t,Xkf_Sk(1,:),'--s','LineWidth',2);%卡尔曼滤波轨迹
% M=M';
% plot(M(1,:),'k','LineWidth',1);%一步预测轨迹
legend('理论轨迹','实际运动轨迹','观测轨迹','基本滤波后轨迹','限制k减小滤波后轨迹','带遗忘因子卡尔曼滤波','扩大P的卡尔曼滤波');
xlabel('横坐标 T/s');
ylabel('纵坐标 X/m');
 
figure
hold on;box on;
plot(t,Err_Observation,'-');
plot(t,Err_KalmanFilter,'--');
plot(t,Err_rkKalmanFilter,'-.');
plot(t,Err_ffKalmanFilter,'-x');
plot(t,Err_adKalmanFilter,'-s');
% legend('滤波前误差',num2str(mean_Observation),'基本滤波后误差','固定增益滤波后误差');
legend(sprintf('滤波前误差%.03f',mean_Observation),sprintf('基本滤波后误差%.03f',mean_KalmanFilter),...
sprintf('限制k减小增益滤波后误差%.03f',mean_fixKalmanFilter),sprintf('带遗忘因子滤波后误差%.03f',mean_ffKalmanFilter),...
sprintf('扩大P的滤波后误差%.03f',mean_adKalmanFilter));
xlabel('观测时间/s');
ylabel('误差值');


% 计算欧氏距离子函数
function dist=RMS(X1,X2)
if length(X2)<=2
    dist=sqrt((X1(1)-X2(1))^2);
else
    dist=sqrt((X1(1)-X2(1))^2);
end
end

  • 9
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 卡尔曼滤波(Kalman Filter)和平方根容积卡尔曼滤波(Square Root Cubature Kalman Filter)是常用的估计滤波算法,主要应用于状态估计和系统辨识问题。下面我将分别介绍其Matlab实验代码。 卡尔曼滤波的Matlab实验代码如下所示: ```matlab % 定义系统模型 A = [1 0.1; 0 1]; % 状态转移矩阵 B = [0.005; 0.1]; % 控制输入矩阵 H = [1 0]; % 观测矩阵 Q = [0.01 0; 0 0.01]; % 过程噪声协方差矩阵 R = 1; % 观测噪声方差 % 初始化滤波器状态 x_k = [0; 0]; % 状态向量 P_k = [1 0; 0 1]; % 状态协方差矩阵 % 初始化观测数据 y_k = [10; 8]; % 观测向量 % 迭代更新滤波器 for i = 1:length(y_k) % 预测步骤 x_k1 = A * x_k; P_k1 = A * P_k * A' + B * Q * B'; % 更新步骤 K_k = P_k1 * H' / (H * P_k1 * H' + R); x_k = x_k1 + K_k * (y_k(i) - H * x_k1); P_k = (eye(2) - K_k * H) * P_k1; end % 输出滤波结果 disp(x_k) ``` 平方根容积卡尔曼滤波的Matlab实验代码如下所示: ```matlab % 定义系统模型 A = [1 0.1; 0 1]; % 状态转移矩阵 B = [0.005; 0.1]; % 控制输入矩阵 H = [1 0]; % 观测矩阵 Q = [0.01 0; 0 0.01]; % 过程噪声协方差矩阵 R = 1; % 观测噪声方差 % 初始化滤波器状态 x_k = [0; 0]; % 状态向量 P_k = [1 0; 0 1]; % 状态协方差矩阵 % 初始化观测数据 y_k = [10; 8]; % 观测向量 % 迭代更新滤波器 for i = 1:length(y_k) % 预测步骤 x_k1 = A * x_k; P_k1 = A * P_k * A' + B * Q * B'; % 更新步骤 K_k = P_k1 * H' / (H * P_k1 * H' + R); x_k = x_k1 + K_k * (y_k(i) - H * x_k1); P_k = (eye(2) - K_k * H) * P_k1; % 平方根容积卡尔曼滤波的特殊步骤 [U, S, V] = svd(P_k); S_sqrt = sqrtm(S); P_k = U * S_sqrt * V'; end % 输出滤波结果 disp(x_k) ``` 这是一个简单的卡尔曼滤波平方根容积卡尔曼滤波的Matlab实验代码,用于对给定观测数据进行状态估计。根据实际需求,你可以对系统模型和参数进行相应的调整和修改。 ### 回答2: 卡尔曼滤波(Kalman Filter)和平方根容积卡尔曼滤波 (Square Root Cubature Kalman Filter)是两种常见的滤波算法。以下是一个使用MATLAB实现的简单示例代码。 卡尔曼滤波的MATLAB实验代码: ```matlab % 定义系统模型 A = [1 1; 0 1]; % 状态转移矩阵 B = [0.5; 1]; % 输入转移矩阵 C = [1 0]; % 观测矩阵 Q = [0.01 0; 0 0.01]; % 状态过程噪声协方差矩阵 R = 1; % 观测噪声协方差矩阵 % 初始化滤波器 x = [0; 0]; % 状态估计初始值 P = [1 0; 0 1]; % 状态估计误差协方差矩阵 % 定义观测数据 Y = [1.2; 2.1; 3.7; 4.3]; % 观测数据 % 开始滤波 for i = 1:length(Y) % 预测状态 x = A * x + B * 0; % 无输入 P = A * P * A' + Q; % 更新状态 K = P * C' / (C * P * C' + R); x = x + K * (Y(i) - C * x); P = (eye(size(A)) - K * C) * P; % 输出状态估计值 disp(['第', num2str(i), '次观测的状态估计值为:']); disp(x); end ``` 平方根容积卡尔曼滤波的MATLAB实验代码: ```matlab % 定义系统模型 A = [1 1; 0 1]; % 状态转移矩阵 B = [0.5; 1]; % 输入转移矩阵 C = [1 0]; % 观测矩阵 Q = [0.01 0; 0 0.01]; % 状态过程噪声协方差矩阵 R = 1; % 观测噪声协方差矩阵 % 初始化滤波器 x = [0; 0]; % 状态估计初始值 P = [1 0; 0 1]; % 状态估计误差协方差矩阵 % 定义观测数据 Y = [1.2; 2.1; 3.7; 4.3]; % 观测数据 % 开始滤波 for i = 1:length(Y) % 预测状态 x = A * x + B * 0; % 无输入 P = sqrtm(A * P * A' + Q); % 更新状态 G = P * C' / (C * P * C' + R); x = x + G * (Y(i) - C * x); P = sqrtm((eye(size(A)) - G * C) * P * (eye(size(A)) - G * C)' + G * R * G'); % 输出状态估计值 disp(['第', num2str(i), '次观测的状态估计值为:']); disp(x); end ``` 以上是一个简单的卡尔曼滤波平方根容积卡尔曼滤波的MATLAB实验代码示例。这些代码用于实现两种滤波算法,并使用预定义的系统模型和观测数据进行状态估计。实际应用中,需要根据具体问题进行参数调整和适应性修改。 ### 回答3: 卡尔曼滤波(Kalman Filter)和平方根容积卡尔曼滤波(Square Root Cubature Kalman Filter)都是常用于状态估计的滤波算法。 卡尔曼滤波是一种最优线性估计算法,基于状态空间模型,在系统的观测和模型误差服从高斯分布的条件下,通过使用先验信息和测量更新,来估计系统的状态。卡尔曼滤波基本原理是通过不断地对先验状态和先验协方差进行更新和修正,得到最优估计。 平方根容积卡尔曼滤波是对传统卡尔曼滤波的改进算法之一,主要用于解决非线性系统的状态估计问题。相比于传统的卡尔曼滤波平方根容积卡尔曼滤波使用了卡尔曼滤波的根协方差表示,通过对根协方差进行传输和修正,避免了传统卡尔曼滤波中协方差矩阵计算的数值不稳定问题,提供了更好的数值精度和计算效率。 以下是MATLAB实验代码的伪代码示例: ``` % 卡尔曼滤波 % 初始化状态和观测噪声的协方差矩阵 Q = ... % 状态噪声的协方差矩阵 R = ... % 观测噪声的协方差矩阵 % 初始化状态和协方差矩阵 x = ... % 状态向量 P = ... % 状态协方差矩阵 for k = 1:N % 预测步骤 x_hat = ... % 先验状态估计 P_hat = ... % 先验协方差估计 % 更新步骤 K = P_hat * C' / (C * P_hat * C' + R) % 卡尔曼增益 x = x_hat + K * (z - C * x_hat) % 后验状态估计 P = (eye(size(K,1)) - K * C) * P_hat % 后验协方差估计 end % 平方根容积卡尔曼滤波 % 初始化状态和观测噪声的协方差矩阵 Q = ... % 状态噪声的协方差矩阵 R = ... % 观测噪声的协方差矩阵 % 初始化状态和根协方差矩阵 x = ... % 状态向量 S = ... % 根协方差矩阵 for k = 1:N % 预测步骤 x_hat = ... % 先验状态估计 S_hat = ... % 先验根协方差估计 % 更新步骤 y = z - H * x_hat % 观测残差 K = S_hat * H' / (H * S_hat * H' + R) % 平方根卡尔曼增益 x = x_hat + K * y % 后验状态估计 S = (eye(size(K,1)) - K * H) * S_hat % 后验根协方差估计 end ``` 注意,在实际应用中,需要根据具体问题的状态模型和观测模型进行相应的参数设置和代码实现。以上代码仅为伪代码示例,具体的实现方式可能有所不同。可根据实际需求和问题进行算法选择和代码编写。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值