SVM介绍和基本原理1200字左右

支持向量机(SVM)是一种常用的机器学习算法,主要用于分类和回归问题。它的基本原理是通过找到一个最优的超平面,将数据分为不同的类别。在这个过程中,SVM使用一些数学技巧,将高维空间中的数据映射到低维空间,从而有效地解决了高维数据分析的问题。

SVM的基本原理是在给定的数据集中找到一个超平面,将数据分为不同的类别。一个超平面是一个n-1维的线性子空间,其中n是数据的特征维数。例如,如果数据有两个特征,那么超平面是一个一维的线性子空间,也就是一个直线;如果数据有三个特征,那么超平面是一个二维的线性子空间,也就是一个平面。在二维空间中,超平面就是一个直线,它将数据分为两个类别。

在SVM中,我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值