支持向量机(SVM)是一种常用的机器学习算法,主要用于分类和回归问题。它的基本原理是通过找到一个最优的超平面,将数据分为不同的类别。在这个过程中,SVM使用一些数学技巧,将高维空间中的数据映射到低维空间,从而有效地解决了高维数据分析的问题。
SVM的基本原理是在给定的数据集中找到一个超平面,将数据分为不同的类别。一个超平面是一个n-1维的线性子空间,其中n是数据的特征维数。例如,如果数据有两个特征,那么超平面是一个一维的线性子空间,也就是一个直线;如果数据有三个特征,那么超平面是一个二维的线性子空间,也就是一个平面。在二维空间中,超平面就是一个直线,它将数据分为两个类别。
在SVM中,我们