用Python写一个onnxruntime调用USB摄像头进行推理加速并将预测标签实时显示的程序...

该文介绍了一个方法,通过OpenCV库捕获USB摄像头的实时视频帧,然后利用ONNXRuntime加载的模型对帧数据进行处理和推理,最终展示预测结果。示例代码展示了如何整合这两个库进行视频分析。
摘要由CSDN通过智能技术生成

可以使用 OpenCV 库来调用 USB 摄像头并获取实时视频帧。然后,将视频帧转换为模型需要的输入格式,然后使用 onnxruntime 进行推理。最后,将预测的标签在窗口中显示出来即可。

下面是一个示例代码:

import cv2
import onnxruntime as rt
import numpy as np

# 调用摄像头并获取视频帧
cap = cv2.VideoCapture(0)

# 加载模型
sess = rt.InferenceSession("model.onnx")

# 循环显示每一帧
while True:
    # 获取视频帧
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值