【第2周】卷积神经网络

文章介绍了使用CNN对MNIST和CIFAR10数据集进行分类,比较了全连接网络与CNN的效果,展示了不同网络结构如VGG16和ResNet的性能差异。通过数据打乱像素顺序,强调了CNN中卷积操作的重要性。此外,讨论了数据增强、dropout等方法对提升准确率的影响,以及不同池化方法的作用。
摘要由CSDN通过智能技术生成

1. 代码练习

 MNIST 数据集分类:构建简单的CNN对 mnist 数据集进行分类。同时,还会在实验中学习池化与卷积操作的基本作用。

CIFAR10 数据集分类:使用 CNN 对 CIFAR10 数据集进行分类;使用 VGG16 对 CIFAR10 分类。

1.1 MNIST 数据集分类:

分别创建一个简单的全连接网络和卷积神经网络,并训练:

class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x

 打乱像素顺序再次在两个网络上训练与测试:

# 这里解释一下 torch.randperm 函数,给定参数n,返回一个从0到n-1的随机整数排列
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

 

总结:分别在小型全连接网络和卷积神经网络上进行训练,可以发现:含有相同参数的 CNN 效果要明显优于简单的全连接网络,是因为 CNN 主要通过卷积和池化两个操作,更好的挖掘图像中的信息。打乱像素顺序后再在这两个网络上测试,卷积神经网络的性能显著下降。这是因为CNN中的卷积操作,通过filter选取相邻像素的5*5大小的receptive field,如果打乱像素顺序,receptive field的特征性下降,进而CNN的泛化能力将会下降。

1.2 CIFAR10 数据集分类:

使用CNN进行CIFAR10 数据集分类

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)


for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零 防止与上个数据相关
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

Accuracy of the network on the 10000 test images: 64 %,可以看到准确率不高。

使用VGG16 对 CIFAR10 分类

class VGG(nn.Module):
    def __init__(self):
        super(VGG, self).__init__()
        self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
        #self.features = self._make_layers(self.cfg)
        #self.classifier = nn.Linear(2048, 10)
        self.features = self._make_layers(self.cfg)
        self.classifier = nn.Linear(512, 10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)
     
# 网络放到GPU上

net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

 Accuracy of the network on the 10000 test images: 83.88 %,可以看到使用一个简化版的 VGG 网络,就可以显著提高性能。

使用VGG19 对 CIFAR10 分类

# 定义网络模型
class VGG19Net(nn.Module):
    def __init__(self):
        super(VGG19Net, self).__init__()
 
        net = []
 
         # 输入32*32,输出16*16
        net.append(make_vgg_block(3, 64, 2))
 
         # 输出8*8
        net.append(make_vgg_block(64, 128, 2))
 
         # 输出4*4
        net.append(make_vgg_block(128, 256, 4))
 
         # 输出2*2
        net.append(make_vgg_block(256, 512, 4))
 
         # 无池化层,输出保持2*2
        net.append(make_vgg_block(512, 512, 4, False))
 
        self.cnn = nn.Sequential(*net)
 
        self.fc = nn.Sequential(
             # 512个feature,每个feature 2*2
            nn.Linear(512*2*2, 256),
            nn.ReLU(),
 
            nn.Linear(256, 256),
            nn.ReLU(),
 
            nn.Linear(256, 10)
         )
 
    def forward(self, x):
        x = self.cnn(x)
 
         # x.size()[0]: batch size
        x = x.view(x.size()[0], -1)
        x = self.fc(x)
 
        return x

Accuracy of the network on the 10000 test images: 77.52 % 相较于VGG16有所下降。VGG19更深,但却没有更好的性能。???

VGG16层结构(13个卷积层和3个全连接层)

VGG19层结构(16个卷积层和3个全连接层)

使用ResNet 对 CIFAR10 分类

# ResNet
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[1], 2)
        self.layer3 = self.make_layer(block, 64, layers[2], 2)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(64, num_classes)

    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out

Accuracy of the network on the 10000 test images: 80.28 %,性能还可以。

总结:测试了CNN,VGG16,VGG19,ResNet对CIFAR10 分类性能,可以发现不同网络模型的性能不同,越复杂不一定越准确。要提升准确率,不仅要选择恰当的模型,还要调整各个参数,设置不同的策略,来达到较好的效果。

2. 问题总结

1.dataloader   里面 shuffle 取不同值有什么区别?

Shuffle为true表示随机读取样本,false为按顺序读取样本。一般来说训练集的shuffle为true,测试集的shuffle为false,这样是为了提高模型的泛化能力,防止模型陷入局部最优。Shuffle可以防止过拟合,并且使得模型学到更加正确的特征。

2. transform 里,取了不同值,这个有什么区别?

torchvision.transforms: 里面包括常用的图像预处理方法,用于图片的转换等一系列预处理操作,例如数据归一化,缩放,裁剪,旋转,翻转,填充,添加噪声,灰度变换,线性变换,仿射变换,亮度,饱和度,对比变换等。当进行数据预处理时,可以将通过transform平移、翻转、对称图片,改变RGB通道强度,扩大样本量,达到数据增强的作用。

3.epoch 和 batch 的区别?

当一个完整的数据集经过神经网络一次,并返回一次,这个过程称为一个epoch。epoch定义了学习算法在整个训练数据集中的工作次数。epoch由一个或多个batch组成。epoch 数量一般很大,通常是数百或数千,允许学习算法运行到模型的误差被充分地最小化。

当数据集很大时,对于每个 epoch,很难将所有的数据集一次读入到内存中,这就需要将数据集分为几次读入,每次称为一个 batch。

4.1x1的卷积和 FC 有什么区别?主要起什么作用?

1x1的卷积主要是为了进行降维,增加特征多样性,表征能力更强,加入非线性,提升网络的表达能力。在 googLeNet、ResNet、DenseNet 中得到了非常广泛的应用。而全连接层每一个结点都与上一层的所有结点相连,进行一个全连接。实际就是进行卷积运算,卷积后的结果为全连接层的一个节点。从计算上来说,1x1的卷积和 FC 都是一个卷积计算的过程(y=WX+b),在理论上是可以相互替代的。

5.residual leanring 为什么能够提升准确率?

残差block:去掉相同的主体部分,从而突出微小的变化

解决了随着网络深度的增加带来的梯度消散问题,减轻了神经网络的退化。

6.代码练习二里,网络和1989年 Lecun 提出的 LeNet 有什么区别?

练习二使用最大值池化 ,LeNet中使用平均值池化。

分类识别常使用最大值池化,当需要综合特征图上的所有信息做相应决策时,通常会用平均值池化。

7.代码练习二里,卷积以后feature map 尺寸会变小,如何应用 Residual Learning??????

当维度不一致时(对应的是维度增加一倍),这就不能直接相加。有两种策略:(1)采用zero-padding增加维度,此时一般要先做一个downsamp,可以采用strde=2的pooling,这样不会增加参数;(2)采用新的映射(projection shortcut),一般采用1x1的卷积,这样会增加参数,也会增加计算量。

8.有什么方法可以进一步提升准确率?

DropOut随机失活:训练时随机关闭部分神经元,测试时整合全部神经元。

数据增强:图片平移、翻转、对称,改变RGB通道强度。

多卷积核:增加特征多样性,插入1*1卷积核进行降维,用小的卷积核代替大的卷积核。

3.视频随记

全连接网络处理图像的问题

参数太多:权重矩阵参数太多导致过拟合

卷积神经网络的解决方式

局部关联,参数共享?

kernel/filter:卷积核/滤波器

weights:权重

receptive field:感受野

activation map/feature map:特征图

y=WX+b  W:卷积核 b:stride

padding扩充

不加padding时输出的特征图大小:(N-F)stride+1

加padding时输出的特征图大小:(N+2padding-F)stride+1

depth/channel:深度,与filter个数相同

池化Pooling:缩放featuremap,保留主要特征,减少参数和计算量,防止过拟合提高泛化能力。一般位于卷积层和卷积层之间。

最大值池化(分类识别)和平均值池化

全连接层:两层之间的所有神经元都有权重链接,位于尾部。

AlexNet

DropOut随机失活:随机关闭部分神经元,测试时整合全部神经元

数据增强:平移 翻转 对称,改变RGB通道强度

卷积-ReLU-池化   

ZFNet

 网络结构和AlexNet结构相同,感受野相同,滤波器变多。

VGG

是一个更深网络  参数量更多

GoogleNet

很深,但参数量不大,没有FC层

多卷积核增加特征多样性,利用padding保持多卷积核串联输出大小一致,太复杂

插入1*1卷积核进行降维,用小的卷积核代替大的卷积核,降低参数量,增加非线性激活函数,表征能力更强

Stem部分(卷-池)- 多个Inception结构堆叠 - 输出(没有额外的全连接层,除了最后的类别分类)

利用辅助分类器解决模型深度过深导致的梯度消失问题

ResNet残差学习网络

深度152层 残差block:去掉相同的主体部分,从而突出微小的变化

可以用来训练非常深的网络

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学模型,常用于图像识别和计算机视觉任务。卷积神经网络的基本结构包括卷积层、池化层和全连接层[1]。典型的卷积神经网络结构有AlexNet、ZFNet、VGG、GoogleNet和ResNet等。 其中,ResNet是引入了残差学习网络的一种深度神经网络模型,它解决了梯度消失的问题,可以用来训练非常深的网络。 在使用卷积神经网络进行图像分类时,需要定义网络结构。可以通过继承nn.Module类并实现其forward方法来定义网络。可学习参数的层应该放在构造函数的init方法中。 总的来说,卷积神经网络是一种用于图像识别和计算机视觉任务的深度学习模型,具有卷积层、池化层和全连接层。ResNet是一种引入了残差学习网络的深度神经网络模型,解决了梯度消失问题。在定义卷积神经网络时,需要继承nn.Module类,并实现其forward方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【OUC_SE_2022】第三作业:卷积神经网络基础](https://blog.csdn.net/OUC_SE_GROUP18/article/details/127340419)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值