01#
背景
在效果广告投放场景中,媒体侧需要准确衡量每次请求的价值,模型预估值在广告竞价中扮演着核心角色。模型预估精度的提升,是改善媒体侧变现效率、提升广告收益的核心技术驱动力。
此前,爱奇艺效果广告预估模型为小时级模型,从广告投放到效果反馈线上模型有数个小时的延迟。从23年下半年开始,我们致力于从模型时效性优化的方向提升模型能力,将小时级模型升级为分钟级在线深度学习(ODL),在爱奇艺流量取得了6.2%的收入提升。与小时级等离线模型相比,ODL的应用面临着来自工程和效果两方面的挑战,本文总结了ODL落地中遇到的挑战、思考及相应的解决方案。
02#
ODL挑战及解决方案
从整个系统架构来看,ODL的落地需要重点关注如下几个要求和问题:
工程框架:
稳定性:流式链路鲁棒性要求较高,需避免积压或中断;
时效性:推理端模型更新应具备较高的时效性;
兼容性:框架需有良好的灵活性,能够兼容离线/在线、pCTR/pCVR等模型。
模型效果:
解决实时样本延迟反馈问题;
模型灾难遗忘问题;
样本独立同分布要求。
工程框架
1.服务鲁棒性
ODL简要流程如下图所示,为了流式服务鲁棒性,关键节点进行了相应的优化: