8类CNN-Transformer混合架构魔改方案盘点,附23个配套模型&代码

为进一步提高模型的性能,我们将CNN在局部特征提取方面的优势与Transformer在全局信息建模方面的优势两相结合,提出了CNN-Transformer混合架构。目前,它已经成为我们研究视觉任务、发文章离不开的模型。针对CNN+transformer组合方向的研究也成为了当下计算机视觉领域研究中的大热主题。

CNN-Transformer架构凭借众所周知的优势,在视觉任务上取得了令人瞩目的效果,它不仅可以提高模型在多种计算机视觉任务中的性能,还能实现较好的延迟和精度之间的权衡。为挖掘CNN-Transformer混合架构更多的潜力,有关于它的各种变体的研究也逐步增多。

为了方便同学们了解CNN-Transformer的最新进展与研究思路,我这次就和大家分享该架构常用的8种魔改方法,包含早期层融合、模块融合、基于注意力的融合等。每种方法的代表性模型以及配套的论文代码也都整理了,希望同学们阅读后可以获得缝合模块的启发,快速涨点。

23个模型原文及开源代码需要的同学看文末

1.早期层融合

Hybrid ViT

论文:AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

用于大规模图像识别的Transformer

「简述:」Transformer架构在自然语言处理中很成功,但在计算机视觉中的应用有限。目前,注意力机制主要与卷积神经网络结合使用。我们发现,可以直接在图像补丁序列上应用纯Transformer,它在图像分类任务上表现很好。与最先进的卷积神经网络相比,Vision Transformer(ViT)在多个基准测试中取得了出色的结果,而且训练所需的计算资源大大减少。

DETR

论文:End-to-End Object Detection with Transformers

使用Transformers进行端到端目标检测

「简述:」论文提出了一种新的目标检测方法,将目标检测看作是一个直接集合预测问题。这种方法简化了检测流程,不需要像非最大抑制或锚点生成这样的手动设计组件。新方法的主要成分包括一个全局损失和一个变压器编码器-解码器架构。它通过推理对象之间的关系和全局图像上下文,直接并行输出最终预测集。这个模型概念简单,不需要专门的库,在COCO数据集上的准确性和运行时性能与Faster R-CNN相当。

LeViT

论文:LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference

用于更快推理的 ConvNet 服装中的视觉transformer

「简述:」论文设计了一种名为LeViT的混合神经网络架构,用于快速推理图像分类。该架构结合了卷积网络和视觉Transformer的优点,并引入了一些新的方法来提高准确性和效率。作者在不同硬件平台上进行了广泛的实验,结果表明LeViT在速度/准确性权衡方面优于现有的卷积网络和视觉Transformer。

CPVT

论文:CONDITIONAL POSITIONAL ENCODINGS FOR VISION TRANSFORMERS

视觉transformer的条件位置编码

「简述:」论文提出了一种条件位置编码方案,用于视觉transformer。与先前的位置编码不同,作者的方案是动态生成的,并根据输入令牌的局部邻域进行条件化。这使得该方案可以推广到比模型在训练过程中见过的任何序列更长的输入序列,并提高了性能。作者还使用一个简单的位置编码生成器实现了该方案,并将其命名为条件位置编码视觉transformer(CPVT)。

### CNN-Transformer混合模型架构概述 CNN-Transformer混合模型旨在结合卷积神经网络(CNN)的空间局部性和变换器(Transformer)的全局依赖捕捉能力。这种组合能够有效处理图像分、目标检测等多种视觉任务。 #### 架构设计要点 1. **多尺度特征提取** 利用多个不同大小的感受野来捕获图像中的细节信息,通过堆叠若干个卷积层实现深层次特征表达[^1]。 2. **自注意力机制引入** 将 Transformer 的核心组件——自注意力模块嵌入到传统 CNN 结构之中,在保持原有空间结构的同时增强了对于远距离像素间关系的理解能力。 3. **残差连接与跳跃路径** 为了缓解深层网络训练过程中可能出现梯度消失等问题,采用似于 ResNet 中的设计思路加入跨层直连通路;此外还存在一些变体版本会额外增加从浅层直接通往较深位置节点之间的短捷方式。 4. **融合策略多样性** 不同研究工作提出了多种方法来进行两者间的无缝衔接,比如级联式拼接、并行双支路以及交替迭代更新等方式均被广泛探索和验证其有效性。 ```mermaid graph TB; A[Input Image] --> B[CNN Layers]; B --> C[Patch Embedding & Position Encoding]; C --> D[Multi-head Self Attention]; D --> E[Feed Forward Networks]; F{Residual Connection} ---|Yes| G[Addition Operation]; F ---|No| H[Bypass Path]; I[Merge Mechanism] -.-> J[Output Layer]; style A fill:#f96,stroke:#333,stroke-width:4px; style B fill:#bbf,stroke:#777,stroke-width:2px; style C fill:#8bf,stroke:#444,stroke-width:2px; style D fill:#bbb,stroke:#666,stroke-width:2px; style E fill:#bfb,stroke:#555,stroke-width:2px; style F fill:#ff0,stroke:#aaa,stroke-width:2px; style G fill:#faa,stroke:#ccc,stroke-width:2px; style H fill:#afa,stroke:#ddd,stroke-width:2px; style I fill:#ddf,stroke:#eee,stroke-width:2px; style J fill:#fff,stroke:#fff,stroke-width:2px; ``` 上述图表展示了典型的 CNN-Transformer 混合框架流程示意: - 输入图片先经过一系列标准卷积操作获取基础表征; - 接着转换成适合后续处理的形式(如划分补丁加位置编码),再送入基于自注意机理构建而成的核心计算单元内完成复杂模式识别任务; - 整个过程伴随有丰富的跳转选项确保信号传递顺畅无阻塞现象发生,并最终汇总形成可供进一步分析利用的结果向量形式输出给下一层逻辑判断环节使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值