在深度学习领域,优化算法的选择对模型的训练效率和最终性能有着至关重要的影响。这其中,粒子群优化因其实现简单、收敛速度快等特点,成为了最热门的优化算法之一。
粒子群优化(PSO)结合了随机性和智能行为的特点,既能够通过随机搜索探索解空间,又能通过模拟智能行为来提高搜索效率,是解决复杂优化问题的有效工具。
不过,粒子群优化在实际应用中也存在一些局限性,比如有时会陷入局部最优解的问题。为了克服这一点,研究者们在算法中引入了各种改进策略,比如结合遗传算法的PSO-GA、基于EC的粒子群优化模型TKU-PSO等,以提高算法的探索能力和开发能力。
本文介绍15种粒子群优化算法的改进方案与应用实例,涉及卷积神经网络、自动驾驶等热门主题。
论文原文需要的同学看文末
TKU-PSO: An Efficient Particle Swarm Optimization Model for Top-K High-Utility Itemset Mining
方法:本文提出了一种基于粒子群优化的启发式模型TKU-PSO,用于发现前k个高效用途项集。TKU-PSO引入了几种有效的策略,这些策略对模型的性能至关重要。首先,通过适应度估计和利用已探索的候选项,有效地减少了粒子评估的次数。其次,引入了最小解决方案适应度的概念,在算法的几个阶段中用于修剪不太有希望的候选项。最后&#x