深度迁移学习最近取得了相当大的进展,很多成果登上了各大一区TOP期刊,比如发表于Nat. Commun.的深度迁移学习新框架TransDSI、Nat Biomed Eng上深度迁移学习在AD治疗中的应用...
实际上,这种结合了深度学习和迁移学习的技术,在学术界和工业界一直广受欢迎,因为它可以在新任务上快速达到高性能,无需从头开始训练模型,极大减少了运算时间和资源消耗,非常适用于医学影像分析等这类数据稀缺或计算资源有限的领域。
另外,深度迁移学习还可以提高模型的泛化能力,这意味着模型能在未见过的数据上保持高预测准确性,从而在各种任务和领域中表现出色,也说明了深度迁移学习的应用前景之广阔。
本文分享10篇深度迁移学习最新论文,包含多篇顶刊,有论文需求的同学可以直接拿来作参考,开源代码也附上了,方便大家复现。
全部论文+开源代码需要的同学看文末
A protein sequence-based deep transfer learning framework for identifying human proteome-wide deubiquitinase-substrate interactions
方法:论文提出了基于蛋白质序列的深度迁移学习框架,用于识别人类蛋白质组范围内的去泛素化酶与底物之间的相互作用。这个框架名为TransDSI,它通过转移蛋白质组规模的进化信息来预测未知的DSIs,即使在训练数据不足的情况下也能有效工作。
创新点:
-
基于蛋白序列的迁移学习:TransDSI通过蛋白序列预训练解决数据不足问题。
-
解释性模块:PairExplainer解释预测结果,揭示DSI结构基础。
-
新功能视角与药物靶点发现:TransDSI助力发现新药物靶点和精准医疗。
Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data
方法:论文提出了一种名为scDEAL的深度迁移学习框架,通过整合大规模的多细胞系RNA-seq数据,预测单细胞-癌症药物反应。scDEAL框架的核心在于将与药物相关的bulk RNA-seq数据与单细胞RNA测序数据进行协调,并转移在bulk RNA-seq数据上训练的模型来预测scRNA-seq中的药物反应。
创新点:
-
scDEAL框架利用深度迁移学习将bulk RNA-seq模型应用于单细胞数据,以预测药物反应。
-
该框架采用整合梯度方法识别关键基因,揭示药物反应机制。
-
scDEAL通过DAE和细胞类型正则化保留单细胞数据的多样性。
Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow
方法:文章讨论了深度迁移学习在阿尔茨海默病治疗干预中的应用,结合了无监督机器学习(包括分子结构的向量表示、药效团指纹和构象指纹)和实验验证,以筛选和验证新的线粒体自噬诱导剂。
创新点:
-
研究团队开发了一个AI模型,通过分子特征分析,高效识别线粒体自噬诱导剂。
-
AI筛选发现Kaem和Rhap能诱导线粒体自噬,改善线虫学习行为。
-
研究表明,激活线粒体自噬可能有助于治疗阿尔茨海默症。
Deep discriminative transfer learning network for cross-machine fault diagnosis
方法:论文提出了一种新型迁移学习网络DDTLN,旨在通过结合IJDA机制和I-Softmax损失实现跨机器故障诊断,利用MMD和CORAL构建的分布差异度量增强域混淆,从而在六个跨机器转移任务中取得超过90%的平均准确率。
创新点:
-
DDTLN通过更好地对目标域和源域的边缘和条件分布进行对齐,实现了细粒度的类别分布对齐。
-
IJDA机制结合了原始Softmax损失和IJDA损失,其平均诊断准确率比原始IDA机制高出6.37%。
-
I-Softmax损失优化特征分离,提升多分类任务的准确度。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“深度迁移”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏